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Introduction

The options market is a fascinating side of finance that gained momentum in the last 50
years. The famous black and Scholes formula allowed investors to take exposure to the market at
a fraction of the price. Their invention gave rise to an entirely new segment of trading that
allowed users to trade rights to own products rather than purchasing the product itself. Options
seem to be very confusing to the average trader. The following section will give a quick
understanding of Options followed by a volatility arbitrage strategy to trade them efficiently.

Options are derivatives that give an investor the right to buy or sell a product; hence, they
are essentially contracts or pieces of paper that define a right to own or sell. There are two types
of options namely call and put options. Call options are contracts that give an investor the right
to buy a stock while put options give the investor a right to sell the stock. Every contract has two
parties namely the writer of the option and the buyer of the option. Hence, a call writer gives the
buyer the right to buy the underlying stock, and put writer gives the buyer the right to sell the
underlying stock.

Black and Scholes utilized the volatility of the underlying stock to price the option.
However, that volatility is an estimation of historic standard deviation. To get the current market
sentiment, one can back out the implied volatility of the underlying stock by using the current
price at which the call option transacted. The implied volatility reflects the current market
sentiment of the price movement of the underlying stock. The implied volatility is one of the
major factors in determining the price movement of the option. According to Doris Dobi, * the
market price of an option and its implied volatility are interchangeable; many quote the option
price in terms of its implied volatility” (Doris 5). Therefore, predicting the implied volatility is as
good as predicting the price of an option. Below is a formula for pricing the call option:

C = N(d1)S; — N(dy)Ke ™™
In 2+ (r+ %)t

o/t
and dy = d; — /%

where di =

C =call option price

N = CDF of the normal distribution
St = spot price of an asset

K = strike price

T =risk-free interest rate

t  =time to maturity

0 = volatility of the asset

The option contract has a strike price(St) and expiry date after time (t). The strike price of
a call option is the price at which the contract allows the buyer to buy the stock. The expiry date
is the time frame in which the option needs to be exercised or else will be deemed worthless. The



strike price can have options be in the money or out of the money. These terms are mere
comparisons of the strike price and the stock price. For example, if AAPL is trading at $155 and
the option to buy Apple is at $150 with an expiry of 7 days, then the option is in-the-money as
the strike price ($150) is less than the stock price ($155). Again, volatility can quickly turn an in-
the-money option into an out-of-the-money option. Therefore, predicting the implied volatility
and trading it strategically can enable one to take advantage of the inherent arbitrage that can
exist in the market.

Implied volatility is not a constant like the volatility in the option pricing. Dobi’s paper,
modeling volatility risk in equity options; a cross-sectional approach, graphed the implied
volatility against time to expire and moneyness of the option. The graph below illustrates how
volatility increases when the option reaches closer to expiration. Furthermore, in-the-money
options have a higher implied volatility than out-of-the-money options. The research by Dobi
helps in understanding the relationship implied volatility has with moneyness and time to expire.
Her research validated the importance of implied volatility in the options market.

Dynarmics of Implied Vol Surfaces for SPX
using Call Options
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Modeling volatility risk in equity options; a cross-sectional approach (Doris Dobi 5)

This paper is specifically identifying the arbitrage in the implied volatility and trading on
it. Volatility arbitrage trading is called Vol-arb in the finance industry. The concept mainly
identifies option volatilities that are highly correlated. For example, the volatility of AAPL,
NVDA, MEE, and MSFT are similar due to sector and their volatility correlations can be tested.
If there is a high correlation between them and their volatility is stationary; then the concept of
stationarity can be applied to infer mean reverting features of the dataset. Therefore, the
temporary volatility mispricing could be used to take advantage of the delayed market effect on
the option pricing. For example, if AAPL volatility is 1.3 and MSFT is at 1.5; then the
assumption can be made that there is a mispricing and the volatility will converge. The fact that
AAPL is under volatile than its basket means its option is cheaper than MSFT. Therefore, the
investor should buy the AAPL option at the cheaper price and short the MSFT option at the
higher price. Their mean reverting feature will eventually kick in and the AAPL volatility will
increase while the MSFT volatility will decrease. Therefore, the investor will end up making a
profit on the arbitrage that existed due to the misalignment of volatility between the highly
correlated stock options.



Chapter 1
Data Description and Methodology

My research involved utilizing Wharton Research Data Services (WRDS) to retrieve
option pricing data from Option Metrics. The data bank has petabytes of option pricing data and
is extremely costly to retrieve. Harvard University’s collaboration with WRDS enabled me to get
access to the dataset. My research started by pulling data from January 2020 to August 2023 for
every option traded on the S&P 500. The data was over 30 GB and required sophisticated
computing power to be operated on. Therefore, the scope of the paper was reduced to 6 months
of pricing data focused on the top 100 hedge fund stocks according to hedge follows (the scope
limitation is outlined in detail in Chapter 6 of this paper). This allowed me to compute the
correlation on the stock option volatility and generate heatmaps. For this research, I focused on
pricing NVDA (Nvidia) and TSLA (Tesla) option volatility as they are high-volume-traded
stocks. The high volume of trades ensures liquidity; thus, making them good stock picks for a
vol-arb trading strategy. The 6-month dataset was used to develop the heatmap and basket of
stock options that correlate to NVDA and TSLA. Once the basket was determined, I utilized 6
years of data from January 2018 to August 2023 to develop the vol-arb trading model. The
dataset has option data up to August 2023; hence, my research focuses on data up to that point
only. Furthermore, pricing data was focused on the last 7 days before the option expired. The
dataset has 7 days, 30 days, 60 days, 90 days, and 365 days option expiry terms. However, the
action of most options happens around the final week of the options expiry; hence, for this paper,
I limited the scope to the final 7-day pricing data. The paper is also focusing on American
options rather than European options. Furthermore, the data is limited to the call options and any
missing data columns were omitted from the research. The scope limitation section of this paper
highlights different results obtained on the larger datasets to provide an insight into the future
possibilities.

The data had over 30 columns that identified different aspects of the option prices. The
following diagram gives a quick understanding of what the data entails. The appendix has a
detailed explanation followed by a link to get further insight into the column headers:

id | vldate || symbol | exdate || last_date| ¥ | strike_pri(-| best_bid |7 best_offe|¥ |volume | ¥ open_intet ¥ impl volati ¥ detta | ¥|gamma |¥|vega |v|theta _|¥]optionid | ¥ contract (¥ cusip | ]ticker |¥]sic v lissuer |~

101504 9/1/22 AAPL220902C185000 9/2/22 9/1/22 185000 4 0.01 20 4241 1040076 0002021 0.000745  0.05306  -10.0664 148533364 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C187500 9/2/22 9/1/22 187500 [ 0.01 10 2067 1119537  0.00189  0.000652  0.049891 -10.19563 148720102 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C190000 9/2/22 9/1/22 190000 [ 0.01 110 2189 1197399  0.001778  0.000576  0.04715 -10.31472 148533365 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C192500 9/2/22  8/30/22 192500 [ 0.01 0 783 1273751 0.001681 0.000515  0.044772 -10.42509 148720103 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220802C195000 9/2/22 9/1/22 195000 [ 0.01 50 572 1348674  0.001596  0.000464  0.042697 -10.52794 148533366 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C197500 9/2/22  8/30/22 197500 0 0.01 0 354 1.422242  0.001521  0.000421  0.040875 -10.62426 148720104 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL 220902C200000 9/2/22  8/26/22 200000 0 0.01 0 1933 1.494521  0.001454  0.000384  0.039259 -10.71493 148533367 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C205000 9/2/22.  8/24/22 205000 o 0.01 0 248 1635438 000134  0.000326  0.036498 -10.88198 148533368 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C210000 9/2/22.  8/19/22 210000 0 0.01 0 65 1771824  0.001246  0.000282  0.034194 -11.03339 148533369 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C215000 9/2/22  8/19/22 215000 0 0.01 0 283 1904 0001168 0.000247  0.032218 -11.17201 148533370 100 3783310 AAPL 3571 APPLE INC
101504 9/1/22 AAPL220902C220000 9/2/22  8/29/22 220000 0 0.01 0 57 2032244  0.001101  0.000219 00305 -11.20979 148533371 100 3783310 AAPL 3571 APPLEINC
101504 9/1/22 AAPL220902C225000 9/2/22  8/11/22 225000 o 0.01 o 11 2156801  0.001044  0.000197  0.028995 -11.41816 148533372 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C230000 9/2/22 230000 [ 0.01 0 0 2277893  0.000994  0.000178  0.027676 -11.52828 148596218 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C235000 9/2/22 235000 [ 0.01 0 0 2395723 0.00095 0.000162  0.026515 -11.63111 148596219 100 3783310 AAPL 3571 APPLE INC
101594 9/1/22 AAPL220902C240000 9/2/22.  8/29/22 240000 [ 0.01 0 12 2510479 0000911 0.000149  0.025492  -11.7275 148596220 100 3783310 AAPL 3571 APPLEINC
101594 9/1/22 AAPL220302C245000 9/2/22 245000 [ 0.01 0 0 262233 0000876 0.000138 0.024584 -11.81811 148596221 100 3783310 AAPL 3571 APPLE INC
101584 9/1/22 AAPL220902C250000 9/2/22 9/1/22 250000 [ 0.01 2 277 2731431 0.000845  0.000128  0.023773 -11.90367 148596222 100 3783310 AAPL 3571 APPLE INC

9/1/22 $ 1717 $ 17.25 359403.00 247364.00 182

8/31/22 $ 1675 $ 17.24 262,118.00 230694.00 148

The data above has a quick snapshot of AAPL option data. Cell A44 is showing an option
price on 1 September 2022 for an option that is expiring on 2 September 2022. The option bid
price is $0 and the offer price is $0.01. This is a classic example of an out-of-the-money option.



The strike price was $185 when the stock was trading around $150 on that day. Therefore, the
option was $35 out of the money (OOM). The volume traded was 20 and the open interest was
4241. The open interest highlights the number of options still available in the market. The
implied volatility, cell K44 is the main point of highlight for our research. The implied volatility
is 1.04. The remaining columns highlight the Greeks. These are different metrics that can help a
trader understand how the stock price movement can affect the option price. We have limited our
scope to focus on the implied volatility column.

The data set has over 20 options with different strike prices for a single stock on a single
expiry date and that makes the option dataset gigantic compared to a stock dataset. To
consolidate the data and get a better understanding of the volatility, an average of the daily
volatility of all options for a particular stock was taken. The Python file attached to this paper
illustrates that. Cell K63 illustrates the average of 1 September 2022 volatility at 1.82. The bid
and offer price were also averaged to get an average option price on that particular date. Daniel’s
research paper reduced the size of the dataset using a similar average; however, his paper
focused on the options whose moneyness was greater than 0.8 (Daniels 44). His paper
highlighted that “trading volume tends to concentrate on options close to being at-the-money,
[hence] deleted 55,647 options with moneyness (i.e. St/Kt) less than 0.8 (55,647 observations)
and greater than 1.2 (832,892 observations) (Daniels 44).”

The averaging of the data allowed me to draw a time series of implied volatility
movements for each stock option and made the data more manageable. Below is AAPL stock
option volatility graphed over 1 year from 2022 August to 2023 August. The data identifies
stationarity. The analysis of the graph and further explanation of stationarity tests is explained in
the analysis section of the paper.
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date,ticker

There were further data observations that were made on the dataset before averaging the
volatility. The chart below highlights the option bid price against the strike price of the option.



The graph follows the classic hockey stick graph. The options that are in and at the money are
valuable while the options that are out of the money hold no value. The straight line on the x-axis
where y=0 illustrates the option strike prices where the option itself holds no value. The right to
buy a contract becomes valuable as the option strike price is lower than the market stock price.
The hockey stick graph makes sense because in-the-money options will lead to an immediate
profit; hence, the added value of the contract.
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Further data analysis was done to get a sense of the data. The implied volatility was plotted
against the strike price of the option. The graph follows the “u-shape” implied volatility curve
wherein the volatility is lowest at-the-money and increases as the strike prices are further away
from the underlying stock price. The graph also gives an understanding of the options that are
sold in the market. There are more options sold with a lower strike price difference when the
option is trading at the money. For example, in the case of AAPL, there are more options near
$150 as the incremental strike price difference between the options is lowered to $5. Therefore,
the options are trading in increments of $5 with strike prices of $125, $130, 135, 140, 145 etc.
However, the options that are trading away from the at-the-money option have a jump of $10
where one option would trade at $100 and the next would trade at $110, and so on. The graph of
the volatility below illustrates this point clearly as the dots are more clustered together when they
are closer to at-the-money options. The data graph below helps in allowing averages to be taken
of the implied volatility to get a single volatility that represents the option that expires on a single
day. This helps in getting one implied volatility that reflects the option for a particular stock on a
specific day (Daniels).



impl_volatility
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The data was further analyzed to get a sense of how the volume of an option is relative to the
strike price. The volume below is for the AAPL call options expiring on 2 September 2022. The
visualization illustrates that the majority of trading happens near at-the-money options. Hence,
liquidity for the options market happens closer to at-the-money options while OOM options have
far less liquidity in trading volumes.
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The major point to note in the data section is that only 7 days before option expiry data was
analyzed since the majority of trade happens during that time frame. Furthermore, the option data
is 100 times bigger than the stock market; therefore, the effective way to model implied volatility
and build a vol-arb strategy is by averaging the implied volatility for a stock option with the
same expiry date.



The data analytics was carried out in Python to get a sense of the number of options issued at
different strike prices. The plotted histogram for AAPL shows that the majority of options are
issued around the strike price. This again helps to better understand the raw data:
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The bid-ask spread for different strike prices for AAPL is also plotted before an average implied
volatility is taken. The AAPL options market seems very liquid as the spread is very small;
however, the research could be furthered in creating trading strategies around the bid-ask spread.
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The days to expire were calculated by subtracting the expiry date from the current date of the
data and a new column day to expire was created. This was used to visualize the volume trade
around days to expire for AAPL. The data tells a story where the trading volume is closer to the
final day of an option expiry. The volume on 5 days before expiry was 0. This is because options
expire on Friday and 5 days before Friday is a Sunday; hence, no trading activities occur on
Sunday. The 6 days before expiry had some trading volume. This is strange as trading doesn’t



occur on Saturday. The irregularities of the data on Saturday were out of the scope of this project
and were incorporated in drawing analysis on the vol-arb trading strategy.
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Chapter 2
Analysis of Code and Data

The first step after averaging the volatility was to plot it. The plotted volatility for AAPL stock
gave a story of the data’s stationarity. Data is required to be stationary when running forecasting
models because it improves predictability and allows for fewer forecasting errors. Data
stationarity can be tested through Augmented-Dickey Fuller (ADF) statistics or p-value tests.
The stationarity of the data means that it has a constant mean and constant standard deviation.
Furthermore, it implies that the data has a mean reverting signal which helps in the forecasting
ability of the data. Below is the plotted implied volatility for AAPL
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The ADF statistics is -3.86 and the p-value is 0.002. Since the ADF is negative and the p-value is
less than 0.05, the data is stationary. The graph can visually illustrate this point as the data is
reverting around the mean.

ADF Statistic: -3.8669317300500508
p-value: 0.0022921487399941787
Critical Values:

1%, —-3.4582467982399105
Critical Values:

5%, -2.8738137461081323
Critical Values:

10%, -2.5733111490323846

The plotted AAPL implied volatility illustrated stationarity. Therefore, I started to plot similar
nature stocks over AAPL’s implied volatility. I plotted Microsoft’s (MSFT) implied volatility
over AAPL’s. The graph showed a lot of similarities:
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Therefore, I started analyzing the cointegration for the tech sector stock option volatility. I
dropped all the infinite and not available values. Then I filtered the data on the following stocks

tickers to filter = ['date', 'AAPL', 'ADBE', 'ADP', 'AMAT', 'AMD', 'AVGO'
'"CRM', 'ETN', 'GE','GOOG', 'GOOGL', 'IBM', 'INTC', 'LRCX',

'"META', 'MSFT', 'MU', 'NEE', 'NOW', 'NVDA', 'ORCL', 'PANW', 'QCOM','TSM',
"TXN' ]

The filtered stocks were tested for cointegration and the resulting p-values were plotted on a
heatmap. The correlation in the tech sector is highlighted below:
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The dark green illustrates high cointegration between the tech sectors' implied volatility. In the
tech sector, NVDA has been a volatile stock of late. Hence, I picked a basket of stocks that
cointegrated with NVDA and could mimic the NVDA implied volatility. The stock options I
picked for the NVDA basket are:

['GOOG', 'NOW', 'MSFT', 'AMD', 'ADP']

Furthermore, I was interested in analyzing TSLA stock option volatility against cross-sector
stock option volatility. Therefore, I ran a cointegration test on different sectors' stock options

along with TSLA. The result of the cointegration test is below:

4

11
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The above dataset helped in identifying stock option volatility that cointegrated with TSLA. The
stock basket selected for the vol-arb trading for TSLA is :

['PG', 'NKE', 'LRCX', 'GLD', 'BA']

The heatmap portrays a high cointegration of the stock option volatility of the above stocks and
TSLA

Chapter 3

Model Building — Multi Linear Regression
Multi Linear Regression - NVDA 6-Month Data

The cointegrated tech sector basket was analyzed for vol-arb trading. To forecast the volatility of
the basket, a training and test set split was done. The data was 6 months of options data from
3/01/2023 to 08/31/2023. The data was split on 30 June 2023. Therefore, the training set had 4
months of data and the test set had 2 months of data.

Thereafter, a multi-linear regression model was fit on the logged implied volatility of NVDA and
the basket of stocks that mimicked NVDA’s implied volatility. The basket of stocks selected for
this research are:

['GOOG', 'NOW', 'MSFT', 'AMD', 'ADP']

The regression was then used to predict the NVDA option volatility. The predicted NVDA
volatility was compared against the actual NVDA volatility to see how the model performed.
The difference in the prediction was tested for stationarity and it gave a result of

MLR RSquared: 0.3598336734532721

p-value for in-sample stationarity: 4.365541441587516e-07

12



t statistics for in sample stationarity: -5.812623181796803

The result shows that the p-value was less than 0.05; hence, the spread is stationary. However,
the MLR r square was 0.36; therefore, the model is not a good predictor of NVDA volatility.
However, we are not trying to predict the NVDA volatility in the vol-arb strategy. We are instead
trading the mean reverting signal. Therefore, since there is high cointegration an investor can
easily trade the arbitrage that exists between the predicted NVDA basket volatility and the actual
NVDA volatility. Below is a graph illustrating the spread of the difference :
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The graph showing the predicted value against the actual implied volatility is below:
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The NVDA volatility reverts to the mean; therefore, the investor can long the call option when
the NVDA basket’s implied volatility is less than the NVDA basket and can short the call option

13



when the NVDA implied volatility is higher than the NVDA basket’s implied volatility. This is a

classic vol-arb strategy that takes advantage of the volatility difference in the market.

A similar test is done on the test data set and the results are as follows:

MLR RSquared: 0.6611205978855109
p-value for in-sample stationarity: 0.0015252056724458247
t statistics for in sample stationarity: -3.978884362058182
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The spread is stationary as the p-value is less than 0.05 and the above graph illustrates a mean
reverting signal. Furthermore, the graph below shows the basket plotted against the NVDA
actual logged volatility. The signal is mean reverting and the investor can trade the volatility
arbitrage in the following situation.
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Multi Linear Regression - NVDA 6 Years Data

The model above had very few data points to build a volatility arbitrage model. Hence, 6 years of
data was imported from the WRDS dataset. The data range is from 1 Jan 2018 to 31 August
2023. The data was trained on the first 5 years from 1 Jan 2018 to 31 December 2022. The test
set was the remaining 8 months of 2023 from Jan 2023 to August 2023. The MLR mode is built
on the training dataset and the forecasted values are compared against the actual NVDA logged
volatility. The spread of the dataset is graphed below:
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MLR RSquared: 0.615256481962784
p-value for in-sample stationarity: 6.119061823123265e-05
t statistics for in sample stationarity: -4.77317208063876

The MLR has a r square of 0.62; this is a really good number as 62% of the NVDA logged
volatility is explained by the basket stock’s coefficients. Furthermore, the p-value is 6.12e-05
which is less than 0.05; hence, proving the spread to be stationary. This model is powerful for
predicting volatility arbitrage. The predicted value is plotted against the actual volatility value for
the training set:
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The graph above illustrates the cointegration and the predictability power of the MLR. The mean
reverting signal can also be observed from the graph above.

The MLR model was kept to work on the test data set for the remaining 8 months of 2023. The
result of the spread is below:
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p-value for in-sample stationarity: 1.427881295338533e-15
t statistics for in-sample stationarity: -9.258519261999913

The p-value is 1.43e-15 which is lower than 0.05; hence proving the stationarity of the spread.
The actual vs forecasted basket is plotted below for the test set. The investor can use this to trade
the volatility arbitrage that exists between NVDA’s option volatility and its basket. Whenever,
the NVDA option volatility is lower than the basket, the investor can go long on the call option
and vice versa.
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Multi Linear Regression - TSLA 6-Month Data

The same test between TSLA and its basket of stock options was done to get an understanding of

the volatility. The training and test dataset was split into 4 months and 2 months respectively.
The training set result of the spread for TSLA and its basket is below:
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MLR RSquared: 0.4021363553545346
p-value for in-sample stationarity: 0.003250233657528494
t statistics for in sample stationarity: -3.768175161496668

The rsquare value is 0.40 which is low; however, the spread is stationary as the p-value is less
than 0.05. Therefore, an investor can trade the arbitrage as the volatility has a mean reverting
signal. The forecasted value is plotted against the actual logged volatility below:
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The MLR Model was applied to the test set. The spread and the forecasted values are graphed as

follows:
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p-value for in-sample stationarity: 1.7701771584970987e-05

t statistics for in-sample stationarity:

-5.049422220927951
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The p-value is 1.77e-05 which indicates the stationarity of the spread. The graph above illustrates
points where the volatility differs and an investor can long or short the call option based on the
spread graph above. For example, on 2023-07-08, the implied volatility of TSLA is around 0.82
whil the basket’s implied volatility is 0.7; hence, an investor could short TSLA call options and
wait for the mean reverting signal to converge. Once the implied volatility drops to converge
with the basket, the investor would end up making a profit from the trade.

Multi Linear Regression - TSLA 6 Years Data

The dataset on TSLA was too small to get an understanding of the MLR Model. Therefore,
similar to NVDA, a 6-year dataset was imported from WRDS. The first 5-year dataset was used
to train the model and the remaining 8 months' data was used to test the model. The results of the
trained model are as follows:
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MLR RSquared: 0.48095040906746633
p-value for in-sample stationarity: 5.2268533347294655e-05
t statistics for in sample stationarity: -4.809008280440021
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The p-value is less than 0.05; therefore, the spread is stationary. The r square is 0.48 which in
this case is lower than the r square obtained for the NVDA prediction. It's safe to conclude that
the basket of stocks can be reshuffled to get a better r-square value. However, for a vol-arb
strategy 0.48 r-square can be still used to produce a decent strategy.

The test set results for the MLR spread of the basket and TSLA’s implied volatility are as
follows:
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p-value for in-sample stationarity: 0.02167477289427217

t statistics for in sample stationarity: -3.171822036085348
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The p-value of the data is less than 0.05; therefore, the spread is stationary. The graph above
illustrates how closely the volatility of the basket mimics TSLA implied volatility. This graph
can be used to build a vol-arb strategy as portrayed in the trading module of this paper below.

Model Building — Support Vector Machine

Support Vector Machine — NVDA

Support Vector Machine modeling was used to predict the volatility on the basket of the NVDA
stock options. The graph below shows the model results to be very similar to the MLR model.
This proves that the basket is a good representation of NVDA’s volatility. The spread is
stationary as the p-value is less than 0.05 at 2.01e-16.

p-value for in-sample stationarity: 2.0107562721764302e-16
t-statistics for in-sample stationarity: -9.593156268018701
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Predictions and Actual NVDA Option Volatility Data
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Support Vector Machine - TSLA

The SVM modeling for TSLA paints a similar picture to the MLR prediction. Both models are
good predictors of the TSLA stock option implied volatility. The p-value of the spread is 8.47¢-
20 which indicates stationarity in the spread. Therefore, either model can be used for the vol-arb
trading.

p-value for in-sample stationarity: 8.469519838772011e-20

t-statistics for in-sample stationarity: -10.957917422363442
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Chapter 4
Purging Data

The dataset is purged to avoid overfitting. Time series data needs to be split in a series and the
order of time needs to be respected for creating a sophisticated model. The training and test splits
conducted for building the MLR model above respected the continuity of time. The purging of
the data omits certain data points in the training set to avoid overfitting. There are 2
visualizations done in this research to understand how the coefficients of the baskets are
developed over time. The 2 methods are expanding window and sliding window.

Expanding Window
In the expanding window, the training set is expanded month-wise after every training.
Therefore, towards the end of the training, the entire data set will be trained. The coefficients of

the basket option stock volatility are noted after every expanding window and are plotted below:

Coefficients for Expanding Window Model

— NOW

0.0

T T T T
2018 2019 2020 2021 2022

After 1 year of training, the model coefficients come very close to the final coefficient value that
is derived after training the model on the 5 year dataset. The above graph helps to understand the
behavior of the coefficient over the training set. It also indicates that a minimum of 1 year of
training data is required to build an ideal model that could be used for vol-arb trading.

Sliding Window

The second way of training the data is by sliding the window of training data on each month
along the dataset. The model is then built on the sliding window dataset and the model is
validated on the validation set. Here the validation set data is purged by 2 days and then the next
15 days data is taken to predict the volatility. This helps in avoiding overfitting as certain data is
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omitted for prediction. The r-square for each model on the sliding month is added to an array and
finally plotted on a histogram:

Count

The graph above shows the model results for each training set that was trained and tested on.
Most of the r square values for every model were above 0.5; hence, the sliding window does
produce multiple models that can be used to predict the volatility. Furthermore, the scatter plot is
developed to show how the r square varies for different training set models.
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The randomness of the scatter plot shows how some training sets have a high percent of

explanatory power towards the validation set while on the other hand, some training data cannot
be utilized in the model building.
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The coefficients for the expanding window are plotted and the noise in the graph indicates the
variability of each training sets predicting power. The sliding model can be used for model
building as it helps with the issue of overfitting; however, for vol-arb trading, the traditional
training and test set split is sufficient to build a strong trading model.

Coefficients for Expanding Window Model
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Chapter 5
Buy and Sell Signals
NVDA Stock Vol-Arb Trading

The final part of this research included developing buy and sell signals. Whenever the implied
volatility of NVDA was less than the basket's implied volatility, the buy signal was indicated
with a green arrow. This meant going long on the call option for NVDA. On the contrary,
whenever the implied volatility of NVDA was higher than the basket of NVDA a sell signal was
raised with a red arro. This meant shorting the NVDA call option as the price of the call option
was expected to fall due to the mean reverting nature of the implied volatility. This strategy is
graphed below for 2023. An investor can use this signal to trade the implied volatility arbitrage.
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NVDA Implied Volatility vs. Basket Predictions (Test Data)
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TSLA Stock Vol-Arb Trading

A Similar implied volatility arbitrage strategy is created for TSLA and its basket prediction. The
graph below illustrates the buy and sell points for the call option on TSLA. An investor can go
long when the implied volatility of TSLA is lower than its basket stock options. The mean
reverting characteristic will pull up the implied volatility; hence, it will in turn increase the call
option price and yield a profit.

TSLA Implied Volatility vs. Basket Predictions (Test Data)
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Chapter 6

Scope Limitation

The project led to a lot of challenges with the data processing. The major challenge was the data
size. The first dataset that I downloaded from WRDS had the entire options price data for 3
years. The data size was over 30 GB and Google Colab crashed as the data was getting ingested
into the application. Therefore, I reduced the scope to 1 year of options data for all stocks. The
data was 13 GB in size and brought the Google Colab application to its edge of operation. The
only option left was to upgrade to Colab pro for further analysis.

Resources X

You are not subscribed. Learn more

You currently have zero compute units available. Resources offered free of
charge are not guaranteed. Purchase more units here.

At your current usage level, this runtime may last up to 82 hours 30 minutes.

Manage sessions

Want more memory and disk space? Upgrade to Colab Pro X

Python 3 Google Compute Engine backend
Showing resources from 1:34 AM to 1:51 AM

System RAM Disk
1.6/12.7 GB 29.4/107.7 GB

Therefore, the scope was further reduced to focus on option data that was 7 days to expiry as
most of the volatility happened closer to the option expiry. Furthermore, the number of years was
reduced to 6 months. The compute power still struggled and the RAM spike usage can be
observed below:
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10%, -2.5667768345942075 At your current usage level, this runtime may last up to 82 hours 10 miny|

ticker A AA AAC AADI 0oo ] Manage sessions
date

- Want more memory and disk space? Upgrade to Colab Pro
da0r NN 1086230 1.003336 0.996470 ... vy P Pg X

2023- Python 3 Google Compute Engine backend
03-02 R2sbete L ST Showing resources from 1:34AM to 2:10AM

52_2::; 0.951653 0.781179 0.754409 ... System RAM Disk

4.4/12.7 GB 30.7/107.7 GB
2023 0.929964 1.219444 1.004532
03-06 : : :
2023-

03-07 NaN 0.878599 1.202890 0.961088

5 rows x 5909 columns

Change runtime type

The 6 month data was prepared for doing a cointegration test which took over 4 hours to execute.
Below are the stocks observed followed by the cointegration results for all the stocks for 6
months of option data.

['AA', 'AAL', '"AAP', '"AAPL', 'ABBV', 'ABNB', 'ABT', 'ACB', 'ACN', 'ADBE', 'ADI', 'ADM', 'ADP', '"ADSK’,
'AEO', 'AFL', 'AFRM', 'AG', 'AGNC', 'Al', 'AIG', 'ALB', 'ALGN', 'ALLY", 'AMAT', 'AMBA', 'AMC', 'AMD',
'AMGN', 'AMLP', 'AMPX', 'AMRSQ', 'AMZN', 'ANET', '"ANF', 'APA', 'APO', 'APPHQ', 'APPS', 'APRN',
'APT', 'AR', '"ARDX', 'ARKG', 'ARKK', '"ASAN', '"ASHR', '"ASML', 'ASO', 'ASTS', 'ATER', 'ATVI', 'AUY",
'AVGO', 'AVXL', 'AXP', '"AXSM', 'AZN', 'AZO', 'BA', 'BABA', 'BAC', 'BAX', 'BB', 'BBAI', 'BBBYQ', 'BBIG',
'BBWI', 'BBY', 'BDX', 'BEKE', 'BHC', 'BIDU', 'BIIB', 'BILI', 'BILL', 'BITO', 'BK', 'BKKT', 'BKLN', 'BKNG',
'BLK', 'BLNK', 'BMY", 'BNTX', 'BOIL', 'BP', 'BRK', 'BROS', 'BTU', 'BUD', 'BURL', 'BX', ' BYND', 'BYON,
'BZFD', 'C', 'CAG', 'CAH', 'CANO', 'CAR', 'CAT', 'CBOE!', 'CC', 'CCJ', 'CCL', 'CEI', 'CELH', 'CF', 'CGC|,
'CHPT', 'CHTR', 'CHWY', 'CI', 'CLF', '"CLOV', 'CLX', '"CMCSA', 'CME/, 'CMG', 'CNC', 'CODX', 'COF',
'COIN', 'COP', 'COR', 'COST', 'COTY", 'CPB', 'CPNG', 'CRM', 'CRON', 'CROX', 'CRSP', 'CRWD', 'CS',
'CSCO/, 'CSIQ', 'CSTM', 'CSX', 'CTRA', 'CVNA', 'CVS', 'CVX', 'CWH', 'CZR', 'DAL', 'DASH', 'DB', 'DBX,
'DD', 'DDD', 'DDOG', 'DE', 'DELL', 'DFS', 'DG', 'DHI', 'DHR', 'DIA', 'DIS', 'DISH', 'DKNG', 'DKS', 'DLO',
'DLTR', ' DNMR', 'DOCU', 'DOW', 'DPZ', 'DT', 'DUST', 'DVN', ' DWAC', 'EA', 'EBAY', 'EDIT', 'EDU', 'EEM',
'EFA', 'ELV', 'EMB', 'EMR', 'ENPH', 'ENVX', 'EOG', 'EPD', 'EQT', 'ERX', 'ET', 'ETSY', 'EVTL', 'EW', 'EWC',
'EWG', 'EWI', 'EWU', 'EWY', 'EWZ', 'EXAS', 'EXPE', 'EXPR', 'F', 'FAS', 'FAZ', 'FAZE', 'FCEL', 'FCX', 'FDX,
'FEZ', 'FFIE', 'FI', 'FIVE', 'FL', 'FOXA', 'FSLR', 'FSLY", 'FSR', 'FTCHF', 'FUBO', 'FUTU', 'FXE', 'FXI', 'GD/,
'GDX', 'GDXJ', 'GE', 'GEHC', 'GH', 'GILD', 'GLD', 'GLW', 'GM', 'GME', 'GNRC', 'GNS', 'GOEV', 'GOLD/,
'GOOG', 'GOOGL', 'GOOS', 'GOTU', 'GPRO', 'GPS', 'GRWG', 'GS', 'GSAT', 'GSK', 'GT', 'HAL', 'HBI', 'HD',
'HES', 'HIG', 'HL', 'HLF', '"HOG', 'HON', 'HOOD', 'HPQ', 'HRL', '"HSBC', 'HSY', 'HUBS', 'HUM', 'HUT',
'HYG', 'HZNP', 'IBB', 1BM', 'ICLN', '[EF', 'ILMN', 'IMPP', 'INDA', 'INO', INTC', 'INTU', TP', '1Q', 'ISRG',
'ITB', 'TTW', TVR', 'TVV', TWM', TYR', JBLU', 'JD', JDST', JETS', 'JKS', TMIA', 'INJ', 'INPR', 'INUG,
'JPM', 'JWN', 'KGC', 'KHC', 'KKR', 'KLAC', 'KMB', 'KMI', 'KMX', 'KO', 'KOLD', 'KR', 'KRE', 'KSS', 'KWEB',
'LAAC', 'LABD', 'LABU', 'LAZR', 'LCID', 'LEN', 'LI', '"LITE', 'LL', 'LLY", 'LMND', 'LMT', 'LNG', 'LOW',
'LQD', 'LRCX', 'LULU', ' LUMN', 'LUV', 'LVS', 'LYFT', 'M', 'MA','MANU', 'MAR', ' MARA', 'MCD', 'MCK',
'MDB', 'MDGL','MDLZ', ' MDT', 'MELI','MET', ' META', ' MGM', 'MJ', ' MLCO', MMAT',' MMM, 'MNKD/,
'MO', ' MOMO', 'MOS', 'MPC', ' MPW', ' MRK', ' MRNA','MRO', MRVL', 'MS', ' MSFT', 'MSOS', ' MSTR',
'MT', ' MTCH', ' MU', MULN', 'MVIS', NCLH', 'NEGG', ' NEM', 'NEOG', 'NET', 'NFLX', 'NIO', 'NKE',
'NKLA', NLY', 'NNDM', 'NNOX', 'NOC', 'NOK', NOV', NOW', NRGV', 'NSC', 'NTES', 'NTR', 'NU', 'NUE',
'NUGT', NVAX', 'NVDA', 'NXPI', 'OCGN', 'OIH', 'OKTA', 'OLED', 'OLN', 'ON', 'OPEN', 'ORCL', 'OXY",
'PAA', 'PACB', PANW', 'PARA', 'PBR', 'PCG', 'PDD', 'PENN', 'PEP', 'PFE', 'PG', 'PHUN', 'PINS', 'PLTR’,
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'PLUG', 'PM!, 'PNC', 'PPG', 'PRVB', 'PSFE', 'PSNY", 'PSX', 'PTON', 'PXD', 'PYPL','QCOM!, 'QQQ, 'QS',
'RACE', RADCQ', 'RBLX', 'RCL', RDFN','RDW', ' REGN', RH', RIDEQ', RIG', RIOT', 'RIVN', RKT,
'RNA', 'RNG', 'ROKU', 'ROST', 'RRC', 'RTX', 'RUM', RUN', 'SABR’, 'SARK', 'SAVA', 'SAVE', 'SBLK/|
'SBUX', 'SCHW', 'SDCCQ', 'SDOW', 'SDS', 'SE/, 'SEDG', 'SFIX', 'SHAK', 'SHEL', 'SHOP', 'SICP", 'SIG',
'SILY', 'SIRT, 'SKLZ, 'SKX', 'SLB', 'SLV", 'SMH', 'SMMT', 'SNAP', 'SNDL', 'SNOW', 'SNV", 'SO', 'SOFT,
'SOLO', 'SONO!, 'SONY', 'SOUN', 'SOXL', 'SOXS', 'SPCE, 'SPGT', 'SPLK', 'SPOT', 'SPWR', 'SPXL', 'SPXS',
'SPXU', 'SPY’, 'SQ", 'SQQQ', 'SRPT', 'SSO', 'STEM', 'STNE/, 'STNG', 'STX', 'STZ', 'SU', 'SVXY", 'SWKS,
'SWN', 'SYF', 'SYY', 'T', 'TAL', 'TAN', TBT', 'TDOC','TEAM', 'TECK', 'TELL', 'TEVA', TGT', 'TGTX,
'THC', 'TJX, 'TLRY', 'TLT, 'TME', 'TMF', 'TMO', 'TMUS', 'TNA', 'TOL', 'TOON', 'TOST', 'TPR’, 'TQQQ,,
'TRIP', ' TROW', 'TSCO', 'TSLA', 'TSLL', 'TSM', 'TTCFQ', 'TTD', ' TTWO', ' TWLO', ' TXN', 'TZA','U', 'UAA',
'UAL', 'UBER', 'UCO', 'ULTA', 'UNG', 'UNH', 'UNP', 'UPRO', 'UPS', 'UPST', 'URA', 'URBN', 'URI', 'USB/,
'USO', 'UUP, 'UVIX', 'UVXY', 'UWMC, 'V', 'VALE', 'VERU', 'VFC', 'VIXY', 'VLO', 'VOD', 'VRTX', 'VTRS),
'VXRT', 'VXX', 'VYX), 'VZ','W', "WB','WBA', 'WBD','WDAY", 'WDC', 'WEAT','WEWKQ', 'WFC', 'WHR',
'WISH', 'WKHS', 'WM', 'WMB', 'WMT', 'WPM', 'WSM', 'WYNN', 'X', 'XBI', 'XHB', 'XLB', 'XLC', XLE/,
'XLF', 'XLI',"XLK', 'XLP', 'XLU', XLV, 'XLY', 'XME', 'XOM', 'XOP', 'XPEV', 'XRT', 'YETT, 'YINN, 'YPF')
YY','Z','ZIM', 'ZM', 'ZS'

The stock option cointegration heat map led to a permutation and combination of 630! Which
took the machine 4 hours to process:

cell has not been executed in this session

executed by Aniket Shroff
4:31AM (4 hours ago)
executed in 6833.335s

[gl= il L o

The heatmap was a complete pair trading strategy for a team to work on. The scope of this
analysis could be useful for a hedge fund that has multiple team members focusing on different
sectors. Each team could be given 100 pairs of options to focus their efforts on. Furthermore,
stronger computing power and cloud storage will be required to have the processing be done
quicker. The cointegrated pairs for the entire stock options are below:
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There are over 4000 pairs that can be traded. Below are some options that the computer printed
out to have a p-value less than 0.05, deeming the pair to be cointegrated with significance.

[(AA',"AAL'), (AA',"AAPL'), (AA', 'ABBV"), (AA', 'ABNB'), (AA', '"ABT"), (AA', 'ACB')

The above dataset was out of scope for our research; hence, a query of 100 top hedge fund stock
picks was taken from https://hedgefollow.com/stocks. The 100 stock option data was then
retrieved from WRDS for a 6-month time frame. This allowed the dataset to be manageable for
further processing. A cointegration test was conducted on certain sectors within the top 100 stock
options. Chapter 2 of this paper highlights the results of these tests.

Finally, this paper doesn’t take into consideration the transaction cost of trading options.
Continuous buy and sell signals could increase the transaction cost significantly. Therefore, a
machine learning algorithm can be developed to account for the transaction cost of each trade.

Conclusion

Volatility arbitrage trading is a great strategy for a portfolio manager. The cointegration of stock
options implied volatility can provide a lot of information regarding the movement of a particular
stock option volatility. The mismatched volatility with stationarity of data creates a golden
opportunity for a trader to trade that arbitrage. An investor can use multilinear regression to
generate the prediction of the basket volatility. The volatility arbitrage between the stock option
implied volatility and the baskets’ predicted volatility can create a lucrative trading opportunity.
In our research, we focused on trading the implied volatility for TSLA and NVDA. Numerous
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volatility arbitrage trading opportunities can be worked on for future projects. The methodology
for developing future vol-arb strategies is very similar to the one employed in this research

paper.
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Appendix

The OptionMetric manual is available to WRDS account holders and OptionMetric clients. The
direct link to the manual is https://wrds-www.wharton.upenn.edu/documents/755/IvyDB
US Reference Manual.pdf

1. Option_Price File

The Options Price file from OptionMetrics contains the historical price, implied volatility,
and sensitivity information for the options on an underlying security.
Field descriptions
a) Security ID = The Security ID for the underlying security.
b) Date = The date of this price.
c) Symbol = The option symbol.
d) Strike = The strike price of the option times 1000.
e) Expiration = The expiration date of the option.
f) Call/Put = C or P, where C is Call, P is Put.
g) Best Bid = The best, or highest, 15:59 EST bid price across all exchanges on which the
option trades.
h) Best Offer = The best, or lowest, 15:59 EST ask price across all exchanges on which the
option
1) Special Settlement =0 or 1 or E.

I. 0 - The option has a standard settlement (100 shares of underlying security are to
be delivered at exercise; the strike price and premium multipliers are $ 100 per
tick).

II. 1 - The option has a non-standard settlement. The number of shares to be
delivered may be different from 100 (fractional shares); additional securities
and/or cash may be required, and the strike price and premium multipliers may be
different than $ 100 per tick.

II.  E - The option has a non-standard expiration date. This is usually due to an error
in the historical data, which has not yet been researched and fixed.
i) Option ID = Option ID is a unique integer identifier for the options contract. This
identifier can be used to track specific options contracts over time.
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v Executive Summary

This google colab document was created by Aniket Shroff for his Research on Volatility Arbitrage Trading. The focus is on the tech sector.
The document follows a cronological order of data exploration, processing and analyzing. Please refer to the research paper for further
clarification

v Ingesting Data

v Import Package

The panda library, numpy, sklearn and other important libraries are imported in order to provide boiler plate code

import yfinance as yf

import pandas as pd

import numpy as np

import csv

from matplotlib import pyplot as plt

import seaborn as sns

from statsmodels.tsa.stattools import coint, adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
import statsmodels.api as sm

from statsmodels import regression

from statsmodels.tsa.stattools import adfuller

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR

import seaborn as sns
from IPython.display import display

import scipy
from scipy.cluster import hierarchy
from scipy.spatial import distance

from sklearn.preprocessing import StandardScaler,Normalizer

from google.colab import drive

v Import Option Pricing Data - Google Drive

There are 3 datasets that have been imported for various analysis in this research. The size of the data limited the research scope to 6
month option trading data from the WRDS dataset. There are some parts of this colab that has data analysis done on 1 year data. The
notes will highlight those results and code

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true 1/42
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#Mounting Google Drive
drive.mount('/content/drive')

#Define Data types for the Columns in the dataset

dtype = {
'secid': 'float64d',
'symbol': 'object',
'symbol_flag':'float64’',
'strike': 'float64',
'cp_flag': 'object',
'strike_price': 'float64’',
'last_price': 'float64',
'best_bid':'float64',
'best_offer': 'float64d',
'volume': 'float64',
'open_interest': 'float64’',
"impl_volatility': 'float64',
'delta': 'float64’',
'gamma': 'float64’',
'vega': 'float64’',
'theta': 'float64',
'optionid': 'float64',
'cfadj': 'float64d’',
'am_settlement': 'float64',
'contract_size': 'float64',
'ss_flag': 'object',
'forward_price': 'float64’',
'expiry_indicator': 'object',
'root': 'object',
'suffix': 'object',
'cusip': 'object',
'ticker': 'object',
'sic' : 'float64',
'index_flag': 'object',
'exchange_d': 'object',
'class': 'object',
'issue_type': 'object',
"industry_group': 'object',
'issuer': 'object',
'div_convention': 'object',
'exercise_style': 'object',
‘am_set_flag': 'object',

F

#define the date column for parsing
date_columns = ['date', 'exdate', 'last_date']

#Load the CSV file from google drive
df = pd.read_csv('/content/drive/My Drive/fiveyearmlr.csv', parse_dates=date_columns, dtype=dtype, low_memory=False)

#Calculate the number of days left
df['daysLeft'] = (df['exdate'] - df['date']).dt.days

#Set the date column as the index
df.set_index('date', inplace=True)

#Display the first 60 dataset
df.head(60)

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true 2/42
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3+ Mounted at /content/drive

—

date

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02
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secid

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

symbol

AMD
180105C10000

AMD
180105C10500

AMD
180105C11000

AMD
180105C11500

AMD
180105C12000

AMD
180105C12500

AMD
180105C13000

AMD
180105C13500

AMD
180105C14000

AMD
180105C14500

AMD
180105C15000

AMD
180105C15500

AMD
180105C16000

AMD
180105C16500

AMD
180105C5000

symbol_flag

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

exdate

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05
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last_date cp_flag strike_price best_bid best_offer

2018-01-02

2018-01-02

2018-01-02

2018-01-02

2018-01-02

2018-01-02

2018-01-02

2017-12-07

2017-12-06

2017-12-04

NaT

2017-12-04

NaT

NaT

NaT

10000.0

10500.0

11000.0

11500.0

12000.0

12500.0

13000.0

13500.0

14000.0

14500.0

15000.0

15500.0

16000.0

16500.0

5000.0

1.00

0.52

0.17

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

5.95

1.02

0.54

0.18

0.04

0.02

0.01

0.01

0.02

0.02

0.02

0.02

0.02

0.02

0.02

6.05

volume

583.0

6660.0

12851.0

2928.0

348.0

274.0

10.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-02

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03
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101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

AMD
180105C5500

AMD
180105C6500

AMD
180105C7000

AMD
180105C7500

AMD
180105C8000

AMD
180105C8500

AMD
180105C9000

AMD
180105C9500

AMD
180105C10000

AMD
180105C10500

AMD
180105C11000

AMD
180105C11500

AMD
180105C12000

AMD
180105C12500

AMD
180105C13000

AMD
180105C13500

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05
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NaT

2017-12-04

2018-01-02

2017-12-13

2017-12-26

2017-12-27

2018-01-02

2018-01-02

2018-01-03

2018-01-03

2018-01-03

2018-01-03

2018-01-03

2018-01-03

2018-01-03

2018-01-03

C

5500.0

6500.0

7000.0

7500.0

8000.0

8500.0

9000.0

9500.0

10000.0

10500.0

11000.0

11500.0

12000.0

12500.0

13000.0

13500.0

5.45

4.45

3.95

3.45

2.97

2.49

1.99

1.49

1.55

1.06

0.62

0.29

0.1

0.04

0.01

0.00

5.55

4.55

4.05

3.55

3.05

2.51

2.01

1.51

1.57

1.08

0.64

0.30

0.12

0.05

0.03

0.02

0.0

0.0

2.0

0.0

0.0

0.0

270.0

210.0

506.0

1882.0

13000.0

15048.0

44560.0

11080.0

2903.0

144.0

4/42



8/7/24,2:17 PM

2018~
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-03

2018-
01-04

2018-
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101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

ANMD
180105C14000

AMD
180105C14500

AMD
180105C15000

AMD
180105C15500

AMD
180105C16000

AMD
180105C16500

AMD
180105C5000

AMD
180105C5500

AMD
180105C6500

AMD
180105C7000

AMD
180105C7500

AMD
180105C8000

AMD
180105C8500

AMD
180105C9000

AMD
180105C9500

AMD
180105C10000

AMD

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
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2018-01-03

2018-01-03

2018-01-03

2018-01-03

NaT

NaT

NaT

NaT

2018-01-03

2018-01-02

2017-12-13

2017-12-26

2018-01-03

2018-01-03

2018-01-03

2018-01-04

2018-01-04

C

C

14000.0

14500.0

15000.0

15500.0

16000.0

16500.0

5000.0

5500.0

6500.0

7000.0

7500.0

8000.0

8500.0

9000.0

9500.0

10000.0

10500.0

0.00

0.00

0.00

0.00

0.00

0.00

6.50

6.00

5.00

4.50

4.00

3.50

3.00

2.55

2.04

2.09

1.59

0.02

0.01

0.01

0.01

0.01

0.01

6.65

6.15

5.10

4.60

4.10

3.60

3.10

2.57

2.07

212

1.61

138.0

111.0

455.0

220.0

0.0

0.0

0.0

0.0

4.0

0.0

0.0

0.0

4.0

434.0

186.0

271.0

733.0
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01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

2018-
01-04

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

101121.0

180105C 10500

AMD
180105C11000

AMD
180105C11500

AMD
180105C12000

AMD
180105C12500

AMD
180105C13000

AMD
180105C13500

AMD
180105C14000

AMD
180105C14500

AMD
180105C15000

AMD
180105C15500

AMD
180105C16000

AMD
180105C16500

60 rows x 38 columns

v Understanding the Raw Data

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-
01-05

2018-01-04

2018-01-04

2018-01-04

2018-01-04

2018-01-04

2018-01-04

2018-01-04

2018-01-04

2018-01-03

2018-01-03

NaT

NaT

11000.0

11500.0

12000.0

12500.0

13000.0

13500.0

14000.0

14500.0

15000.0

15500.0

16000.0

16500.0

0.61

0.21

0.05

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.63

0.22

0.06

0.02

0.02

0.01

0.02

0.02

0.02

0.02

0.02

2364.0

2788.0

14766.0

16485.0

5073.0

10.0

1.0

1.0

0.0

0.0

0.0

0.0

The raw dataset was very confusing. Therefore, various graphs were plotted. AAPL was utilized as an example option for plotting

Histogram Option plotting for AAPL

Plotted AAPL options at different option strike prices. The results illustrate that majority of options are issued closer to the strike price.
This results were plotted from the 1 year dataset from 2022 August to 2023 August WRDS Dataset

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true
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v Bid-Ask spread for AAPL Call Option

The bid ask spread for different strike price is plotted for AAPL call options. The price 1 day before expiration is used for plotting the graph.

The graph illustrates the general price movement of AAPL options and also shows signs of liquidity as the bid ask spread is very tight. This
results were plotted from the 1 year dataset from 2022 August to 2023 August WRDS Dataset

## Filtering for Call Option at 100 and AAPL
# Filter the DataFrame for rows where the issuer is "APPLE INC"
AAPL = df[df["issuer"] == "APPLE INC"]

## Shows Main Strike Price for AAPL

plt.hist(AAPL["strike_price"])
plt.show()

## Creates subdataset for different strike prices
AAPL100 = AAPL[AAPL["strike_price"] == 100000.0]
AAPL120 = AAPL[AAPL["strike_price"] == 120000.0]
AAPL140 = AAPL[AAPL["strike_price"] == 140000.0]
AAPL160 = AAPL[AAPL["strike_price"] == 160000.0]
AAPL180 = AAPL[AAPL["strike_price"] == 180000.0]
AAPL200 = AAPL[AAPL["strike_price"] == 200000.0]

## Further filters by options

1 day before expiry behaviour

AAPL10@DAY1= AAPL10@ [AAPL["daysLeft"] == 1]
AAPL120DAY1= AAPL120[AAPL["daysLeft"] == 1]
AAPL140DAY1= AAPL140[AAPL["daysLeft"] == 1]
AAPL160DAY1= AAPL160[AAPL["daysLeft"] == 1]
AAPL18@DAY1= AAPL180[AAPL["daysLeft"] == 1]
AAPL20@DAY1= AAPL20@ [AAPL["daysLeft"] == 1]

#@ Display the first few rows
AAPL10Q@ODAY1.head ()

## Plots the Bid and Ask over
plt.plot(AAPL10@DAY1['date'],
plt.plot(AAPL10ODAY1['date'],
plt.plot(AAPL120DAY1['date'],
plt.plot(AAPL120DAY1['date'],
plt.plot(AAPL140DAY1['date'],
plt.plot(AAPL140DAY1['date'],
plt.plot(AAPL160DAY1['date'],
plt.plot(AAPL160DAY1['date'],
plt.plot(AAPL180DAY1['date'],
plt.plot(AAPL180DAY1['date'],
plt.plot(AAPL20ODAY1['date'],
plt.plot(AAPL20ODAY1['date'],

##Plots the Legen
plt.legend()

## Shows the plotted graph
plt.show()

of the filtered DataFrame

time for different Strike Prices.

AAPL1@ODAY1['best_bid']l, alpha=0.5, label='Best Bid', color='red')
AAPL10@DAY1['best_offer'], alpha=0.5, label='Best Offer', color='orange')
AAPL120@DAY1['best_bid']l, alpha=0.5, label='Best Bid', color='yellow')
AAPL120@DAY1['best_offer'], alpha=0.5, label='Best O0ffer', color='green')
AAPL140DAY1['best_bid']l, alpha=0.5, label='Best Bid', color='blue')
AAPL140DAY1['best_offer'], alpha=0.5, label='Best 0ffer', color='purple')
AAPL16@DAY1['best_bid']l, alpha=0.5, label='Best Bid', color='pink"')
AAPL16@DAY1['best_offer'l, alpha=0.5, label='Best O0ffer', color='black')
AAPL180DAY1['best_bid']l, alpha=0.5, label='Best Bid', color='brown')
AAPL180DAY1['best_offer'l, alpha=0.5, label='Best O0ffer', color='gray')
AAPL20@DAY1['best_bid']l, alpha=0.5, label='Best Bid', color='cyan')
AAPL20@DAY1['best_offer'], alpha=0.5, label='Best Offer', color='magenta')
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Shroff Aniket Vol-Arb Trading - Colab

50000 100000 150000 200000

<ipython-input-4-4123d8ale438>:19: UserWarning:

AAPL10@DAY1= AAPL10@[AAPL["daysLeft"] == 1]

<ipython-input-4-4123d8ale438>:20: UserWarning:

AAPL120DAY1= AAPL120Q[AAPL["daysLeft"] == 1]

<ipython-input-4-4123d8ale438>:21: UserWarning:

AAPL140DAY1= AAPL140[AAPL["daysLeft"] == 1]

<ipython-input-4-4123d8ale438>:22: UserWarning:

AAPL160DAY1= AAPL160@[AAPL["daysLeft"] == 1]

<ipython-input-4-4123d8ale438>:23: UserWarning:

AAPL180ODAY1= AAPL180@[AAPL["daysLeft"] == 1]

<ipython-input-4-4123d8ale438>:24: UserWarning:

AAPL20@DAY1= AAPL200[AAPL["daysLeft"] == 1]
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v Option Volume in the final week before expiry

The graph below shows the option trading volume for AAPL 1 week before expriry of the option. This illustrates the trading pattern where

T
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the volume picks up in the final week of the option being traded. Day 5 is Sunday; hence, there is no trading activity on that day. This results
were plotted from the 1 year dataset from 2022 August to 2023 August WRDS Dataset
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## Filtering for Call Option at 100 and AAPL
# Filter the DataFrame for rows where the issuer is "APPLE INC"
AAPL = df[df["issuer"] == "APPLE INC"]
plt.bar(AAPL['daysLeft'], AAPL['volume'])

plt.show()

## plt.show()

0

250000 4

200000 4

150000 -

100000 4

50000 -

v Analyzing Implied Volatility

v AAPL average Implied Volatility graph
The implied volatility is averaged for different strike prices to generate a single implied volatility metric for a single day. The data is then

graphed over time in order to visualize the implied volatility. This results were plotted from the 1 year dataset from 2022 August to 2023
August WRDS Dataset
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Shroff Aniket Vol-Arb Trading - Colab

##Taking an average of all volatility for the day of a stock
AAPLgrouped = AAPL.groupby(['date','ticker'])['impl_volatility'].mean()

##Dropped all the Nan and infinite numbers
AAPLgrouped.replace([np.inf, -np.infl, np.nan, inplace=True)

AAPLgrouped.dropna(inplace=True)

##Reset the index

AAPLgrouped_df = AAPLgrouped.reset_index()

##ADF test for staitionarity proved data is stationary

result = adfuller(AAPLgrouped)
print("ADF Statistic:", result[@])
print("p-value:", result[1])

for key, value in result[4].items():

print('Critical Values:"')
print(f'  {key}, {value}')

##Plotted the implied volatility for AAP1

AAPLgrouped.plot()

##Reset the index

AAPLgrouped_df = AAPLgrouped.reset_index()

##Displayed the dataset to show one volatility number for each day
AAPLgrouped_df.head()

Sv ADF Statistic: -3.8669317300500508
p-value: 0.0022921487399941787
Critical Values:

%, —3.4582467982399105

Critical Values:

%, —2.8738137461081323

Critical Values:

10%, -2.5733111490323846

date ticker impl_volatility

0 2022-08-31
1 2022-09-01
2 2022-09-02
3 2022-09-06

4 2022-09-07

AAPL

AAPL

AAPL

AAPL

AAPL

1.481190
1.818609
0.510713
0.751199

0.875668

3.0 A

2.5 1

2.0 A

1.5

1.0

0.5 1

T T T T T T
(2022-08-31 (E0QQ:00; X A)AG:-00 - 255 PRI G-06 - 23 PEPQG-06, 204 FEIQG-08, 31 B0)00:00, AAPL)
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v Implied volatility for all stocks

Shroff Aniket Vol-Arb Trading - Colab

The average implied volatility for all stock options was taken in order to get a dataset with implied volatilites indexed by date and ticker
symbol. This results were plotted from the 1 year dataset from 2022 August to 2023 August WRDS Dataset

##Taking an average of all volatility for the day of a stock
dfgrouped = df.groupby(['date', 'ticker'])['impl_volatility'].mean()

##Dropped all the Nan and infinite numbers
dfgrouped.replace([np.inf, -np.infl, np.nan, inplace=True)

dfgrouped.dropna(inplace=True)

##Reset the index

dfgrouped_df = dfgrouped.reset_index()

##The dataset is displayed

dfgrouped_df.head()

##Dropped all the Nan and infinite numbers
dfgrouped_df.replace([np.inf, -np.inf]l, np.nan, inplace=True)
dfgrouped_df.dropna(inplace=True)

##Dataset is displayed after dropping all Nan values

dfgrouped_df.head()

##the dataset is pivoted to have the columns be the ticker symbols

pivot_df = dfgrouped_df.pivot(index="date', columns='ticker', values='impl_volatility').reset_index(drop = True)

##Dropped column with Nan and did forward fill on the others as still facing Nan errors
pivot_df.fillna(method="'ffill', inplace=True)
pivot_df.dropna(axis=1, how='any', inplace=True)

##Final Dataset is displayed below

pivot_df.head()

ro 4 ticker AA
0 1.056230
1 1.295366
2 0.951653
3 0.929964
4 0.878599

5 rows x 631 columns

AAL
1.003336
1.577626
0.781179
1.219444

1.202890

AAP
0.996470
1.578111
0.754409
1.004532

0.961088

AAPL

0.875830

1.358543

0.549710

0.989025

1.125833

ABBV
1.222613
1.821039
0.532687
0.627974

0.650075

Created a list of all tickers that existed in the large dataset.

## Getting a list of all tickers
tickers = pivot_df.columns.tolist()

print(tickers)

S ['AA', 'AAL', 'AAP',

'AAPL',

'ABBV',

'ABNB',

v Implied Volatility for top 100 hedge fund stocks

'ABT',

ABNB
1.194802
1.012147
0.500979
0.579360

0.871505

'"ACB',

"ACN',

ABT
1.090021
1.336068
0.431204
0.701597

0.800695

'"ADBE"',

ACB
4.192827
5.830968
2.322866
3.004888

4.513471

'"ADI',

ACN
1.223037
1.557699
0.542045
0.708661

0.812730

"ADM',

ADBE
1.190113
1.184055
0.435855
0.483565

0.732249

'ADP', 'ADSK',

XPEV

2.567583

3.473922

1.282976

1.791460

2.327566

0.8044
0.8968
0.3989
0.6083

0.6532

'AEO', 'AF

The average implied volatility for the top 100 stocks according to hedgeflow.com was taken to get a dataset with implied volatilites indexed
by date and ticker symbol. The code is repeated in order to preserve the result on the 1 year dataset observed above. This results were

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true
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plotted from the 6 month dataset from 2023 March to 2023 August WRDS Dataset

##Taking an average of all volatility for the day of a stock
dfgrouped = df.groupby(['date', 'ticker'])['impl_volatility'].mean()

##Dropped all the Nan and infinite numbers
dfgrouped.replace([np.inf, -np.infl, np.nan, inplace=True)
dfgrouped.dropna(inplace=True)

##Reset the index
dfgrouped_df = dfgrouped.reset_index()

##The dataset is displayed
dfgrouped_df.head()

##Dropped all the Nan and infinite numbers
dfgrouped_df.replace([np.inf, —-np.infl, np.nan, inplace=True)
dfgrouped_df.dropna(inplace=True)

##the dataset is pivoted to have the columns be the ticker symbols
pivot_df = dfgrouped_df.pivot(index="date', columns='ticker', values='impl_volatility"')

##Dropped column with Nan and did forward fill on the others as still facing Nan errors
pivot_df.fillna(method="'ffill', inplace=True)
pivot_df.dropna(axis=1, how='any', inplace=True)

##Final Dataset is displayed below
pivot_df.head()

Sv <ipython-input-26-4268a7571bb2>:22: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise ir
pivot_df.fillna(method="'ffill', inplace=True)

ticker AA AAL AAP AAPL ABBV ABNB ABT ACB ACN ADBE ... XPEV X
date
52_2:1- 1.056230 1.003336 0.996470 0.875830 1.222613 1.194802 1.090021 4.192827 1.223037 1.190113 ... 2.567583 0.8044
32_2:2- 1.295366 1.577626 1.578111 1.358543 1.821039 1.012147 1.336068 5.830968 1.557699 1.184055 .. 3.473922 0.8968
gg_z::; 1.295366 1.577626 1.578111 1.358543 1.821039 1.012147 1.336068 5.830968 1.557699 1.184055 ... 3.473922 0.8968
52.2:(; 1.295366 1.577626 1.578111 1.358543 1.821039 1.012147 1.336068 5.830968 1.557699 1.184055 ... 3.473922 0.8968
52_2:7- 0.878599 1.202890 0.961088 1.125833 0.650075 0.871505 0.800695 4.513471 0.812730 0.732249 .. 2.327566 0.6532

5 rows x 631 columns

Created a list of all tickers that existed in the top 100 stocks dataset.

## Getting a list of all tickers in the dataset
tickers = pivot_df.columns.tolist()
print(tickers)

S+ ['AA', 'AAL', 'AAP', 'AAPL', 'ABBV', 'ABNB', 'ABT', 'ACB', 'ACN', 'ADBE', 'ADI', 'ADM', 'ADP', 'ADSK', 'AEQ', 'AF

v Imlied Volatility for top 12 stocks analyzed in model building

The average implied volatility for the 12 stocks identified from cointegration on the 6 month data was taken to get a dataset with implied
volatilites indexed by date and ticker symbol. The code is repeated in order to preserve the result on the 5 year dataset observed above.
This results were plotted for 6 years from 2018 January to 2023 August WRDS Dataset

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true 12/42
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##Taking an average of all volatility for the day of a stock
dfgrouped = df.groupby(['date', 'ticker'])['impl_volatility'].mean()

##Dropped all the Nan and infinite numbers
dfgrouped. replace( [np.inf, -np.inf], np.nan, inplace=True)
dfgrouped.dropna(inplace=True)

##Reset the index
dfgrouped_df = dfgrouped.reset_index()

##The dataset is displayed
dfgrouped_df.head()

##Dropped all the Nan and infinite numbers
dfgrouped_df.replace([np.inf, -np.infl, np.nan, inplace=True)
dfgrouped_df.dropna(inplace=True)

##the dataset is pivoted to have the columns be the ticker symbols
pivot_df = dfgrouped_df.pivot(index="date', columns='ticker', values='impl_volatility"')

##Dropped column with Nan and did forward fill on the others as still facing Nan errors
pivot_df.fillna(method="'ffill', inplace=True)
pivot_df.dropna(axis=1, how='any', inplace=True)

##Final Dataset is displayed below
pivot_df.head()

5% <ipython-input-3-4268a7571bb2>:22: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in
pivot_df.fillna(method='ffill', inplace=True)

ticker ADP AMD BA GLD G00G LRCX MSFT NKE NOW NVDA PG TSLA
date

2018-

01-02 0.479378 1.597138 0.401352 0.245916 0.351948 0.715155 0.640792 0.462814 0.658003 0.497846 0.435184 0.738733

2018-

01-03 0.695151 1.685501 0.474812 0.149064 0.505058 0.903597 0.714734 0.797993 0.807744 0.954948 0.674633 0.895001

(2)?_108‘; 0.868398 1.565132 0.758432 0.493345 0.897195 1.449049 1.124877 0.918952 1.096466 0.745380 0.769397 0.909521

2018-

01-05 0.348830 0.710411 0.274704 0.157816 0.320865 0.392045 0.450390 0.477209 0.290096 0.371140 0.335793 0.445483

v Cointegration
v Cointegration Testing on AAPL and MSFT

This testing is done to illustrate the cointegration between this 2 tech stocks. The p value is less than 0.05; hence the implied volatility is
cointegrated for these 2 stocks. This results were plotted from the 1 year dataset from 2022 August to 2023 August WRDS Dataset

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true 13/42
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AAPLlog = np.log(pivot_df['AAPL'])
MSFTlog = np.log(pivot_df['MSFT'])
score, pvalue, _ = coint(AAPLlog, MSFT1log)

if pvalue < 0.05:
print("Reject the null hypothesis: Time series are cointegrated.")
print(pvalue)

else:
print("Fail to reject the null hypothesis: Time series are not cointegrated.")
print(pvalue)

pd.concat([AAPLlog, MSFTlogl, axis=1).plot()

5% Reject the null hypothesis: Time series are cointegrated.
0.005875113903824956
<Axes: xlabel='date'>

1.0 1
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v Cointegration of entire stocks in the dataset

The cointegration testing was conducted on the entire stock options implied volatility. There were over 630 stock which led to a 4 hour

wait. The result is extremely dense and left here for visual purpose and future scope. This results were plotted from the 1 year dataset from
2022 August to 2023 August WRDS Dataset
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##Function to find cointegrated pairs
def find_cointegrated_pairs(data):
n=data.shape[1]
score_matrix=np.zeros((n,n))
pvalue_matrix=np.ones((n,n))
keys=data.keys()
pairs=[]
for i in range(n):
for j in range(i+1,n):
sl=datalkeys[i]]
s2=datalkeys[j]]
result=coint(s1,s2)
score, pvalue, _ = coint(sl, s2)
score_matrix[i,jl=score
pvalue_matrix[i,jl=pvalue
if pvalue<0.05:
pairs.append((keys[il, keys[j]))
return score_matrix, pvalue_matrix, pairs

symbol_list = tickers

score_matrix, pvalue_matrix, pairs = find_cointegrated_pairs(pivot_df)
print(pairs)

scores, pvalues, pairs = find_cointegrated_pairs(pivot_df)

import seaborn

seaborn.heatmap(pvalues, xticklabels = symbol_list, yticklabels = symbol_list, cmap = 'RdYlGn_r'
, mask = (pvalues >= 0.99)
)

print(pairs)

S [('AA', 'AAL'), ('AA', 'AAPL'), ('AA', 'ABBV'), ('AA', 'ABNB'), ('AA', 'ABT'), ('AA', 'ACB'), ('AA', 'ACN'), ('AA
[(*AA", 'AAL'), ('AA', 'AAPL'), ('AA', 'ABBV'), ('AA', 'ABNB'), ('AA', 'ABT'), ('AA', 'ACB'), ('AA', 'ACN'), ('AA

0.8

- 0.6

-04

0.2

0.0

v Cointegration on the top 100 hedge fund stock - Tech Sector

The cointegration testing was applied on the tech sectors stock options implied volatility. There are 25 tech stock options implied plotted
with a heatmap. This results were plotted from the 6 month dataset from 2023 March to 2023 August WRDS Dataset
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# List of tickers to filter 10 stocks

tickers_to_filter = ['AAPL', 'ADBE', 'ADP', 'AMAT', 'AMD', 'AVGO', 'CRM', 'ETN', 'GE','GO0G',

# Filter columns where ticker is in the list of tickers
filtered_pivot_df = pivot_df.loc[:, pivot_df.columns.isin(tickers_to_filter)]

# Display the first few rows of the filtered DataFrame
filtered_pivot_df.head()

##Function to find cointegrated pairs for the tech stocks
def find_cointegrated_pairs(data):
n=data.shape[1]
score_matrix=np.zeros((n,n))
pvalue_matrix=np.ones((n,n))
keys=data.keys()
pairs=[]
for i in range(n):
for j in range(i+1,n):
sl=datalkeys[i]]
s2=datalkeys[j]]
result=coint(s1,s2)
score, pvalue, _ = coint(sl, s2)
score_matrix[i,jl=score
pvalue_matrix[i,jl=pvalue
if pvalue<0.05:
pairs.append((keys[il, keys[j]))
return score_matrix, pvalue_matrix, pairs

## assigning the tech tickers to the sybols list
symbol_list = tickers

##Printing the highly correlated pairs.
score_matrix, pvalue_matrix, pairs = find_cointegrated_pairs(filtered_pivot_df)
print(pairs)

##Printing the heatmap chart of the cointegrated tech stock.
scores, pvalues, pairs = find_cointegrated_pairs(filtered_pivot_df)
import seaborn

'GOOGL "',

'IBM',

seaborn.heatmap(pvalues, xticklabels = tickers_to_filter, yticklabels = tickers_to_filter, cmap = 'RdYlGn_r'

, mask = (pvalues >= 0.99)
)

print(pairs)

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true
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5% [('AAPL', 'ADBE'), ('AAPL', 'ADP'), ('AAPL', 'AMAT'), ('AAPL',
[("AAPL', 'ADBE'), ('AAPL', 'ADP'), ('AAPL', 'AMAT'), ('AAPL',

date -
AAPL -
ADBE -
ADP -
AMAT -
AMD -
AVGO -
CRM -
ETN -
GE -
GOOG -
GOOGL -
IBM -
INTC -
LRCX -
META -
MSFT -
MU -
MNEE -
NOW -
NVDA -
ORCL -
PANW -
QCOM -
TSM -
TXN -

date
AAPL -
ADBE -
ADP -
AMAT -
AMD -
AVGO -
CRM -
ETN -
GE -
GOOG -
GOOGL -
IBM -
INTC -
LRCX -
META -
MSFT -
MU -
MEE -
NOW -
NWDA -
ORCL -
PANW -
QCOM -
TSM -
TXN -

v Cointegration on the top 100 hedge fund stock - 100 Stocks

'AVGO'),
'AVGO'),

- 0.6

-0.5

-0.4

-0.3

("AAPL',
("AAPL',

'"CRM")
'CRM"')

("AAPL',
("AAPL',

'G00G"),
'G00G'),

The cointegration testing was applied on all the stock options implied volatility. There are 100 stock options implied plotted with a

heatmap. This results were plotted from the 6 month dataset from 2023 March to 2023 August WRDS Dataset

# Display the first few rows of the filtered DataFrame
pivot_df.head()

##Function to find cointegrated pairs for the tech stocks
def find_cointegrated_pairs(data):
n=data.shape[1]
score_matrix=np.zeros((n,n))
pvalue_matrix=np.ones((n,n))
keys=data.keys()
pairs=[]
for i in range(n):
for j in range(i+1,n):
sl=datalkeys[i]]
s2=datalkeys[j]]
result=coint(sl,s2)
score, pvalue, _ = coint(sl, s2)
score_matrix[i,jl=score
pvalue_matrix[i,jl=pvalue
if pvalue<0.05:
pairs.append((keys[i], keys[j1))
return score_matrix, pvalue_matrix, pairs

## assigning the tech tickers to the sybols list
symbol_list = tickers

##Printing the highly correlated pairs.

score_matrix, pvalue_matrix, pairs = find_cointegrated_pairs(pivot_df)

print(pairs)

("AAPL
("AAPL

The above code took 58 minutes to run and the results of the heat map are shown below. Analysing 100 stocks will be tough. Therefore,

the below is there for future research purpose.
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import seaborn

, mask = (pvalue_matrix >= 0.99)

)

seaborn.heatmap(pvalue_matrix, xticklabels = tickers, yticklabels = tickers, cmap = 'RdYlGn_r'
print(pairs)

Sv [('AA', 'AAL'), ('AA', 'AAPL'), ('AA',

'ABBV'), ('AA',

'ABNB'), ('AA', 'ABT'), ('AA', 'ACB'), ('AA', 'ACN'), ('AA

0.8
- 0.6

-04

0.2

0.0

v Cointegration on the top 100 hedge fund stock - Cross Sector Pick

The cointegration testing was applied on a cross sectors stock options implied volatility. There are 14 cross stock options implied plotted
with a heatmap. This results were plotted from the 6 month dataset from 2023 March to 2023 August WRDS Dataset
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# List of tickers to filter 10 stocks
tickers_to_filter = ['ADP','BA', 'BKNG', 'BX','ELV','GLD', 'ISRG', 'LRCX', 'NKE','PG','TGT', 'TSLA"', 'UBER', "WMT"]
# Filter columns where ticker is in the list of tickers
filtered_pivot_df = pivot_df.loc[:, pivot_df.columns.isin(tickers_to_filter)]

Shroff Aniket Vol-Arb Trading - Colab

# Display the first few rows of the filtered DataFrame
filtered_pivot_df.head()

##Function to find cointegrated pairs for the tech stocks
def find_cointegrated_pairs(data):
n=data.shape[1]
score_matrix=np.zeros((n,n))
pvalue_matrix=np.ones((n,n))
keys=data.keys()
pairs=[]
for i in range(n):
for j in range(i+1,n):
sl=datalkeys[i]]
s2=datalkeys[j]]
result=coint(s1,s2)
score, pvalue, _ = coint(sl, s2)
score_matrix[i,jl=score
pvalue_matrix[i,jl=pvalue
if pvalue<0.05:
pairs.append((keys[il, keys[j]))
return score_matrix, pvalue_matrix, pairs

## assigning the tech tickers to the sybols list
symbol_list = tickers

##Printing the heatmap chart of the cointegrated tech stock.

scores, pvalues, pairs = find_cointegrated_pairs(filtered_pivot_df)
import seaborn

seaborn.heatmap(pvalues, xticklabels = tickers_to_filter, yticklabels = tickers_to_filter, cmap = 'RdYlGn_r'
, mask = (pvalues >= 0.99)
)

print(pairs)

>v [('ADP', 'BA'), ('ADP', 'BX'), ('ADP', 'ELV'), ('ADP', 'GLD'), ('ADP', 'LRCX'), ('ADP', 'NKE'), ('ADP', 'PG'), ('
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« Model Building - Tech Sector - NVDA

The model is built using Multi Linear Regression and Support Vector Machine. The models are compared to see performance. For this
research part | have focused on the NVDA implied option prediction. The first MLR results were plotted from the 6 month dataset from
2023 March to 2023 August WRDS Dataset while the second MLR results were plotted for a 6 year dataset from 2018 January to 2023
August WRDS Dataset.

v Multi Linear Regression - MLR

NVDA and NOW testing cointegration: Testing the graph and correlation on tech sector for NVDA and NOW. The implied volatility for both
stock options is highly correlated with a significance of 8.72 * 10*-9. The graph illustrate a mean reverting signal. The analysis below was
done to build a basket that mimicks NVDA implied volatility. The heatmap above has led me to pick 5 stock options to build the MLR

##Log of NVDA and NOW implied volatility is taken
NVDAlog = np.log(filtered_pivot_df['NVDA'])
NOWlog = np.log(filtered_pivot_df['NOW'])

##The cointegration of the logged value is taken
score, pvalue, _ = coint(NOWlog, NVDAlog)

##The significance test for cointegration is conducted

if pvalue < 0.05:
print("Reject the null hypothesis: Time series are cointegrated.")
print(pvalue)

else:
print("Fail to reject the null hypothesis: Time series are not cointegrated.")
print(pvalue)

##The graph of NVDA and NOW is plotted.
pd.concat([NOWlog, NVDAlogl, axis=1).plot()

3% Reject the null hypothesis: Time series are cointegrated.
8.720241591243438e-09
<Axes: xlabel='date'>
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Train and Test Split: The dataset of 6 months is split into a training and test data set. The training set contains 4 months of data and the
test set contains 2 months of data. The split date is 30 June 2023.
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## Data available if from March 2023 to August 2023. I have split the data into 4 Month Training and 2 Months Testin

# Define the split date
split_date = '06-30-2023'

# Convert split_date to datetime
split_date = pd.to_datetime(split_date)

# Split the DataFrame
train_df = filtered_pivot_df[filtered_pivot_df.index <= split_datel
test_df = filtered_pivot_df[filtered_pivot_df.index > split_datel

Building MLR Model for predicting NVDA: The MLR model is built where NOW, MSFT, GOOG, AMD and ADP are the predictors and NVDA is
the target stock option whose implied volatility is predicted. The rsqaured is obtained for the dataset. The rsquared is quite low at 0.35.
However, the spread of the dataset is stationary with significance. Therefore, the spread has a mean reverting signal and the NVDA stock
option implied volatility arbitrage can be traded. The Adickey Fuller test reveals the stationarity of the spread.

## Function to calulate the log value of the implied volatility on the training set.
def logVol(ticker):
return np.log(train_df[ticker])

##testing to see the result of the function for the NVDA logged values
NVDAlog = logVol('NVDA')
NVDAlog.head()

## MLR regression fit on the training dataset to predict NVDA with a basket of NOW, MSFT, GOOG, AMD, and ADP
mlr = regression.linear_model.0LS(logVol('NVDA'), sm.add_constant(np.column_stack((logVol('NOW'), logVol('MSFT'), loc

##Predicting the values on the
mlr_prediction = mlr.params[0] + mlr.params[1] % logVol('NOW') + mlr.params[2] x logVol('MSFT') + mlr.params[3] * loc

##Printing the rsquared value
print('MLR RSquared:', mlr.rsquared_adj)

##Finding the difference between the predicated and the actual log value
spread = NVDAlog — mlr_prediction

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread)[0])

## Plotting the spread

spread.plot()

plt.axhline(spread.mean(), color='black")
plt.legend(['Spread'])

plt.show()
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5% <ipython-input-60-86176a9dcbcl>:13: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. I
mlr_prediction = mlr.params[@] + mlr.params[1] * logVol('NOW') + mlr.params[2] * logVol('MSFT') + mlr.params[3]
MLR RSquared: 0.3598336734532721
p value for insample stationarity: 4.365541441587516e-07
t statistics for in sample stationarity: -5.812623181796803
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Plotting NVDA against Basket-Training Dataset The training set predictors is plotted against the NVDA options volatility. There is a clear
mean reverting signal and arbitrage or a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of NVDA is higher than the basket, the investor can take a short position on
NVDA call option

#Predictions and actual NVDA data plotted
mlr_prediction.name = 'NVDA Option Basket'
pd.concat([NVDAlog, mlr_prediction], axis=1).plot()
plt.ylabel('volatility levels')
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Test Set Analysis for NVDA The following code runs the MLR model on the test data. The resulting spread is stationary as the p value is
less than 0.05. Therefore, the spread has a constant mean and standard deviation.

https://colab .research.google.com/drive/19JKmOmaTGJy2kdS 18QIN_CTUto7b9w{F#scroll To=taQv5cVhwZEj&printMode=true 22/42



8/7/24,2:17 PM Shroff Aniket Vol-Arb Trading - Colab

## Function to calulate the log value of the implied volatility on the test set.
def logVolTest(ticker):
return np.log(test_df[ticker])

##Code to see the result of the function for the NVDA logged values
NVDAlogTest = logVolTest('NVDA')
NVDAlogTest.head()

##Predicting the values on the
mlr_prediction_test = mlr.params[0] + mlr.params[1] * logVolTest('NOW') + mlr.params[2] x logVolTest('MSFT') + mlr.p:

##Finding the difference between the predicated and the actual log value
spread_test = NVDAlogTest - mlr_prediction_test

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread_test)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread_test)[0])

## Plotting the spread

spread_test.plot()
plt.axhline(spread_test.mean(), color='black"')
plt.legend(['Spread'])

plt.show()

[

<ipython-input-77-eb295b912cc9>:10: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. I
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('NOW') + mlr.params[2] x logVolTest('MSFT') +

p value for insample stationarity: 0.0015252056724458247

t statistics for in sample stationarity: -3.978884362058182
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Plotting NVDA against Basket-Test Dataset The test set predictors is plotted against the NVDA options volatility. There is a clear mean
reverting signal and arbitrage for a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long

position on the call option and whenever the implied volatility of NVDA is higher than the basket, the investor can take a short position on
NVDA call option
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## The predicted against the basket log values are posted for the test dataset

mlr_prediction.name = 'NVDA Option Basket Test'

pd.concat( [NVDAlogTest, mlr_prediction_test], axis=1).plot()
plt.ylabel('volatility levels')
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v Multi Linear Regression - MLR 6 Year Dataset

NVDA and NOW testing cointegration: Testing the graph and correlation on tech sector for NVDA and NOW. The implied volatility for both
stock options is highly correlated with a significance of 1.9e-13. The graph illustrate a mean reverting signal. The analysis below was done
to build a basket that mimicks NVDA implied volatility. The heatmap result from the 6 month data above is used to pick the 5 stocks. The
MLR is applied on the 6 years trading dataset

# List of tickers to filter 10 stocks
tickers_to_filter = ['NVDA', 'NOW', 'MSFT', 'GO0OG', 'AMD', 'ADP']

# Filter columns where ticker is in the list of tickers
filtered_pivot_df = pivot_df.loc[:, pivot_df.columns.isin(tickers_to_filter)]

##Log of NVDA and NOW implied volatility is taken
NVDAlog = np.log(filtered_pivot_df['NVDA'])
NOWlog = np.log(filtered_pivot_df['NOW'])

##The cointegration of the logged value is taken
score, pvalue, _ = coint(NOWlog, NVDAlog)

##The significance test for cointegration is conducted

if pvalue < 0.05:
print("Reject the null hypothesis: Time series are cointegrated.")
print(pvalue)

else:
print("Fail to reject the null hypothesis: Time series are not cointegrated.")
print(pvalue)

##The graph of NVDA and NOW is plotted.
pd.concat([NOWlog, NVDAlog], axis=1).plot()
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5% Reject the null hypothesis: Time series are cointegrated.
1.9017047487690774e-13
<Axes: xlabel='date'>
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Train and Test Split: The dataset of 6 years is split into a training and test data set. The training set contains 5 years of data and the test
set contains 8 months of data. The split date is 31 December 2022.

## Data available if from January 2018 to August 2023. I have split the data into 5 years Training and 8 Months Test:

# Define the split date
split_date = '12-31-2022'

# Convert split_date to datetime
split_date = pd.to_datetime(split_date)

# Split the DataFrame
train_df = filtered_pivot_df[filtered_pivot_df.index <= split_datel
test_df = filtered_pivot_df[filtered_pivot_df.index > split_datel

Building MLR Model for predicting NVDA: The MLR model is built where NOW, MSFT, GOOG, AMD and ADP are the predictors and NVDA is
the target stock option whose implied volatility is predicted. The rsqaured is obtained for the dataset. The rsquared is high at 0.62. This is
higher compared to the 6 month data analysis. The spread of the dataset is stationary with significance. Therefore, the spread has a mean
reverting signal and the NVDA stock option implied volatility arbitrage can be traded. The Adickey Fuller test reveals the stationarity of the
spread.
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## Function to calulate the log value of the implied volatility on the training set.
def logVol(ticker):
return np.log(train_df[ticker])

##testing to see the result of the function for the NVDA logged values
NVDAlog = logVol('NVDA"')
NVDAlog.head()

## MLR regression fit on the training dataset to predict NVDA with a basket of NOW, MSFT, GOOG, AMD, and ADP
mlr = regression.linear_model.0LS(logVol('NVDA'), sm.add_constant(np.column_stack((logVol('NOW'), logVol('MSFT'), loc

##Predicting the values on the
mlr_prediction = mlr.params[@] + mlr.params[1] * logVol('NOW') + mlr.params[2] * logVol('MSFT') + mlr.params[3] * loc

##Printing the rsquared value
print('MLR RSquared:', mlr.rsquared_adj)

##Finding the difference between the predicated and the actual log value
spread = NVDAlog - mlr_prediction

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread)[0])

## Plotting the spread

spread.plot()

plt.axhline(spread.mean(), color='black"')
plt.legend(['Spread'])

plt.show()

Sv <ipython-input-115-86176a9dcbcl>:13: FutureWarning: Series.__getitem__ treating keys as positions is deprecated.
mlr_prediction = mlr.params[@] + mlr.params[1] *x logVol('NOW') + mlr.params[2] *x logVol('MSFT') + mlr.params[3]
MLR RSquared: 0.615256481962784
p value for insample stationarity: 6.119061823123265e-05
t statistics for in sample stationarity: -4.77317208063876
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Plotting NVDA against Basket-Training Dataset The training set predictors is plotted against the NVDA options volatility. There is a clear
mean reverting signal and arbitrage or a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of NVDA is higher than the basket, the investor can take a short position on
NVDA call option
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#Predictions and actual NVDA Options volatitlity data plotted
mlr_prediction.name = 'NVDA Option Basket'
pd.concat([NVDAlog, mlr_prediction], axis=1).plot()
plt.ylabel('volatility levels')
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Test Set Analysis for NVDA The following code runs the MLR model on the test data. The resulting spread is stationary as the p value is
less than 0.05. Therefore, the spread has a constant mean and standard deviation.

## Function to calulate the log value of the implied volatility on the test set.
def logVolTest(ticker):
return np.log(test_df[ticker])

##Code to see the result of the function for the NVDA logged values
NVDAlogTest = logVolTest('NVDA')
NVDAlogTest.head()

##Predicting the values on the
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('NOW') + mlr.params[2] x logVolTest('MSFT') + mlr.p:

##Finding the difference between the predicated and the actual log value
spread_test = NVDAlogTest - mlr_prediction_test

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread_test)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread_test)[0])

## Plotting the spread

spread_test.plot()
plt.axhline(spread_test.mean(), color='black"')
plt.legend(['Spread'])

plt.show()
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5% <ipython-input-117-eb295b912cc9>:10: FutureWarning: Series.__getitem__ treating keys as positions is deprecated.
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('NOW') + mlr.params[2] * logVolTest('MSFT') +
p value for insample stationarity: 1.427881295338533e-15
t statistics for in sample stationarity: -9.258519261999913
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Plotting NVDA against Basket-Test Dataset The test set predictors is plotted against the NVDA options volatility. There is a clear mean
reverting signal and arbitrage for a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of NVDA is higher than the basket, the investor can take a short position on
NVDA call option

## The predicted against the basket log values are posted for the test dataset
mlr_prediction.name = 'NVDA Option Basket Test'

pd.concat( [NVDAlogTest, mlr_prediction_test], axis=1).plot()
plt.ylabel('volatility levels')
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v Support Vector Machine - SVM 6 Year Dataset
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NVDA SVM Model: SVM isused to build a model on the training dataset that was defined in the MLR section above. The same stocks are
used as predictors. The spread is plotted and the pvalue is 9.67e-06 which is lower than 0.05; hence, the spread is stationary and has a
mean reverting signal.

#SVM Model fitted to the training data
SVM_model = SVR()
SVM_model.fit(np.log(train_df[['NOW', 'MSFT', 'GOOG', 'AMD', 'ADP' 11), np.log(train_df[['NVDA'I]))

#SVM Model predicts the NVDA option volatility
SVM_preds = SVM_model.predict(np.log(train_df[['NOW', 'MSFT', 'GOOG', 'AMD', 'ADP'I]1))

# Calculate the spread of the actual NVDA option volatility and the predicted one
spread = NVDAlog - SVM_preds

#The pvalue is calculated for the spread. The value is less than 0.05; hence, spread is stationary
print ("p-value for in-sample stationarity: ", adfuller(spread)[1])
print ("t-statistics for in-sample stationarity: ", adfuller(spread)[0])

# Convert spread to a pandas Series for plotting
spread_series = pd.Series(spread, index=train_df.index)

# Plot the spread

spread_series.plot()
plt.axhline(spread_series.mean(), color='black"')
plt.legend(['Spread'])

plt.show()

S¥ /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1183: DataConversionWarning: A column-vector
y = column_or_1d(y, warn=True)
p-value for in-sample stationarity: 9.673908337318868e-06
t-statistics for in-sample stationarity: -5.179636570726371
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Test Prediction: The model is then used on the test dataset. The spread of the test dataset is calculated and the p value is 2.01e-16;
therefore, the spread is stationary

# predictions on the test dataset using the SVM model built
SVM_preds_test = SVM_model.predict(np.log(test_df[['NOW', 'MSFT', 'GOOG', 'AMD', 'ADP'l]))

# Calculate the spread
spread_test = NVDAlogTest - SVM_preds_test

#printing p values for the spread. The spread is stationary as p value is less than 0.05
print ("p-value for in-sample stationarity: ", adfuller(spread_test)[1])

print ("t-statistics for in-sample stationarity: ", adfuller(spread_test)[0])
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# Convert spread to a pandas Seriesn for plotting
spread_series = pd.Series(spread_test, index=test_df.index)

# Plot the spread on a graph
spread_series.plot()
plt.axhline(spread_series.mean(), color='black')
plt.legend(['Spread Test'])

plt.show()
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=¥ p-value for in-sample stationarity: 2.0107562721764302e-16
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SVM vs MLR vs Actual NVDA: The 3 option volatility values are plotted for the test set. The results of the MLR and SVM model are very
similar. An investor can trade this mean reverting stationary signals to take advantage of the volatility arbitrage.

mlr_prediction_test.name = "NVDA_basket_test"

# Convert SVM_preds_test to a pandas Series with the same index as NVDAlogTest for plotting
SVM_preds_test_series = pd.Series(SVM_preds_test, index=NVDAlogTest.index, name="SVM_preds_test")

# Concatenate the data from the MLR, SVM and the actual NVDA options volatility
combined_data = pd.concat([NVDAlogTest, mlr_prediction_test, SVM_preds_test_series], axis=1)

# Plot the data

combined_data.plot()

plt.ylabel('Volatility Levels')

plt.title('Predictions and Actual NVDA Option Volatility Data')
plt.legend(['Actual NVDA', 'MLR Prediction', 'SVM Prediction'])
plt.show()
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v Model Building - Cross Sector - TSLA

The model is built using Multi Linear Regression and Support Vector Machine. The models are compared to see performance. For this
research part | have focused on the TSLA implied option prediction. The predictors for TSLA is a cross basket of stocksThe first MLR
results were plotted from the 6 month dataset from 2023 March to 2023 August WRDS Dataset while the second MLR results were plotted
for a 6 year dataset from 2018 January to 2023 August WRDS Dataset.

v Multi Linear Regression - MLR

TSLA and PG testing cointegration: Testing the graph and correlation on cross sector for TSLA and PG. The implied volatility for both stock
options is highly correlated with a significance of 5.82e-09. The graph illustrate a mean reverting signal. The analysis below was done to
build a basket that mimicks TSLA implied volatility. The heatmap above has led me to pick 5 stock options to build the MLR

##Log of NVDA and NOW implied volatility is taken
TSLAlog = np.log(filtered_pivot_df['TSLA'])
BAlog = np.log(filtered_pivot_df['BA'])

##The cointegration of the logged value is taken
score, pvalue, _ = coint(BAlog, TSLAlog)

##The significance test for cointegration is conducted

if pvalue < 0.05:
print("Reject the null hypothesis: Time series are cointegrated.")
print(pvalue)

else:
print("Fail to reject the null hypothesis: Time series are not cointegrated.")
print(pvalue)

##The graph of NVDA and NOW is plotted.
pd.concat([BAlog, TSLAlog], axis=1).plot()
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E}' Reject the null hypothesis: Time series are cointegrated.
5.817446934986433e-09
<Axes: xlabel='date'>
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Train and Test Split: The dataset of 6 months is split into a training and test data set. The training set contains 4 months of data and the
test set contains 2 months of data. The split date is 30 June 2023.

## Data available if from March 2023 to August 2023. I have split the data into 4 Month Training and 2 Months Testing

# Define the split date
split_date = '06-30-2023'

# Convert split_date to datetime
split_date = pd.to_datetime(split_date)

# Split the DataFrame
train_df = filtered_pivot_df[filtered_pivot_df.index <= split_datel
test_df = filtered_pivot_df[filtered_pivot_df.index > split_datel

Building MLR Model for predicting TSLA: The MLR model is built where PG, NKE, LRCX, GLD and BA are the predictors and TSLA is the
target stock option whose implied volatility is predicted. The rsqaured is obtained for the dataset. The rsquared is quite low at 0.40.
However, the spread of the dataset is stationary with significance. Therefore, the spread has a mean reverting signal and the NVDA stock
option implied volatility arbitrage can be traded. The Adickey Fuller test reveals the stationarity of the spread.

## Function to calulate the log value of the implied volatility on the training set.
def logVol(ticker):
return np.log(train_df[ticker])

##testing to see the result of the function for the NVDA logged values
TSLAlog = logVol('TSLA')
TSLAlog.head()

## MLR regression fit on the training dataset to predict NVDA with a basket of NOW, MSFT, GOOG, AMD, and ADP
mlr = regression.linear_model.0LS(logVol('TSLA'), sm.add_constant(np.column_stack((logVol('PG'), logVol('NKE'), logVol

##Predicting the values on the
mlr_prediction = mlr.params[@] + mlr.params[1] * logVol('PG') + mlr.params[2] * logVol('NKE') + mlr.params[3] * logVol

##Printing the rsquared value
print('MLR RSquared:', mlr.rsquared_adj)

##Finding the difference between the predicated and the actual log value
spread = TSLAlog - mlr_prediction
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## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread)[0])

## Plotting the spread

spread.plot()

plt.axhline(spread.mean(), color='black")
plt.legend(['Spread'])

plt.show()

Sv <ipython-input-37-77e98c9473cd>:13: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. I
mlr_prediction = mlr.params[@] + mlr.params[1] * logVol('PG') + mlr.params[2] x logVol('NKE') + mlr.params[3] %
MLR RSquared: 0.4021363553545346
p value for insample stationarity: 0.003250233657528494
t statistics for in sample stationarity: -3.768175161496668
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Plotting TSLA against Basket-Training Dataset The training set predictors is plotted against the TSLA options volatility. There is a clear
mean reverting signal and arbitrage or a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of TSLA is higher than the basket, the investor can take a short position on
TSLA call option

mlr_prediction.name = 'TSLA Option Basket'
pd.concat([TSLAlog, mlr_prediction], axis=1).plot()
plt.ylabel('volatility levels')
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Test Set Analysis for TSLA The following code runs the MLR model on the test data. The resulting spread is stationary as the p value is
less than 0.05. Therefore, the spread has a constant mean and standard deviation.

## Function to calulate the log value of the implied volatility on the test set.
def logVolTest(ticker):
return np.log(test_df[ticker])

##Code to see the result of the function for the NVDA logged values
TSLAlogTest = logVolTest('TSLA")
TSLAlogTest.head()

##Predicting the values on the
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('PG') + mlr.params[2] * logVolTest('NKE') + mlr.param

##Finding the difference between the predicated and the actual log value
spread_test = TSLAlogTest - mlr_prediction_test

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread_test)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread_test)[0])

## Plotting the spread

spread_test.plot()
plt.axhline(spread_test.mean(), color='black"')
plt.legend(['Spread'])

plt.show()
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5% <ipython-input-39-df37f6742c2d>:10: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. I
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('PG') + mlr.params[2] * logVolTest('NKE') + ml
p value for insample stationarity: 1.7701771584970987e-05
t statistics for in sample stationarity: -5.049422220927951
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Plotting TSLA against Basket-Test Dataset The test set predictors is plotted against the TSLA options volatility. There is a clear mean
reverting signal and arbitrage for a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of TSLA is higher than the basket, the investor can take a short position on
TSLA call option

## The predicted against the basket log values are posted
mlr_prediction.name = 'TSLA Option Basket Test'

pd.concat([TSLAlogTest, mlr_prediction_test], axis=1).plot()
plt.ylabel('volatility levels')
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v Multi Linear Regression - MLR 6 Year Dataset PENDING
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TSLA and PG testing cointegration: Testing the graph and correlation on cross sector for TSLA and PG. The implied volatility for both stock
options are not not correlated with a significance of 0.053. Since the pvalue is close to 0.05. For research purpose the data is considered to
be correlated with a lower significance. The graph illustrate a mean reverting signal. The analysis below was done to build a basket that
mimicks TSLA implied volatility. The heatmap above has led me to pick 5 stock options to build the MLR

# List of tickers to filter 10 stocks
tickers_to_filter = ['TSLA', 'PG', 'NKE', 'LRCX', 'GLD', 'BA']

# Filter columns where ticker is in the list of tickers
filtered_pivot_df = pivot_df.loc[:, pivot_df.columns.isin(tickers_to_filter)]

##Log of NVDA and NOW implied volatility is taken
TSLAlog = np.log(filtered_pivot_df['TSLA'])
BAlog = np.log(filtered_pivot_df['BA'])

##The cointegration of the logged value is taken
score, pvalue, _ = coint(BAlog, TSLAlog)

##The significance test for cointegration is conducted

if pvalue < 0.05:
print("Reject the null hypothesis: Time series are cointegrated.")
print(pvalue)

else:
print("Fail to reject the null hypothesis: Time series are not cointegrated.")

print(pvalue)

##The graph of NVDA and NOW is plotted.
pd.concat([BAlog, TSLAlogl, axis=1).plot()

5% Fail to reject the null hypothesis: Time series are not cointegrated.
0.05291603945882446
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Train and Test Split: The dataset of 6 months is split into a training and test data set. The training set contains 4 months of data and the
test set contains 2 months of data. The split date is 30 June 2023.
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## Data available if from January 2018 to August 2023. I have split the data into 5 years Training and 8 Months Test:

# Define the split date
split_date = '12-31-2022'

# Convert split_date to datetime
split_date = pd.to_datetime(split_date)

# Split the DataFrame
train_df = filtered_pivot_df[filtered_pivot_df.index <= split_datel]
test_df = filtered_pivot_df[filtered_pivot_df.index > split_datel

Building MLR Model for predicting TSLA: The MLR model is built where PG, NKE, LRCX, GLD and BA are the predictors and TSLA is the
target stock option whose implied volatility is predicted. The rsqaured is obtained for the dataset. The rsquared is quite low at 0.40.
However, the spread of the dataset is stationary with significance. Therefore, the spread has a mean reverting signal and the NVDA stock
option implied volatility arbitrage can be traded. The Adickey Fuller test reveals the stationarity of the spread.

## Function to calulate the log value of the implied volatility on the training set.
def logVol(ticker):
return np.log(train_df[ticker])

##testing to see the result of the function for the NVDA logged values
TSLAlog = logVol('TSLA')
TSLAlog.head()

## MLR regression fit on the training dataset to predict NVDA with a basket of NOW, MSFT, GOOG, AMD, and ADP
mlr = regression.linear_model.0LS(logVol('TSLA'), sm.add_constant(np.column_stack((logVol('PG'), logVol('NKE'), logVol

##Predicting the values on the
mlr_prediction = mlr.params[@] + mlr.params[1] * logVol('PG') + mlr.params[2] * logVol('NKE') + mlr.params[3] * logVol

##Printing the rsquared value
print('MLR RSquared:', mlr.rsquared_adj)

##Finding the difference between the predicated and the actual log value
spread = TSLAlog — mlr_prediction

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread)[0])

## Plotting the spread

spread.plot()

plt.axhline(spread.mean(), color='black")
plt.legend(['Spread'])

plt.show()
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5% <ipython-input-101-77e98c9473cd>:13: FutureWarning: Series.__getitem__ treating keys as positions is deprecated.
mlr_prediction = mlr.params[@] + mlr.params[1] * logVol('PG') + mlr.params[2] * logVol('NKE') + mlr.params[3]
MLR RSquared: 0.48095040906746633
p value for insample stationarity: 5.2268533347294655e-05
t statistics for in sample stationarity: -4.809008280440021
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Plotting TSLA against Basket-Training Dataset The training set predictors is plotted against the TSLA options volatility. There is a clear
mean reverting signal and arbitrage or a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of TSLA is higher than the basket, the investor can take a short position on
TSLA call option

mlr_prediction.name = 'TSLA Option Basket'
pd.concat([TSLAlog, mlr_prediction], axis=1).plot()
plt.ylabel('volatility levels')
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Test Set Analysis for TSLA The following code runs the MLR model on the test data. The resulting spread is stationary as the p value is
less than 0.05. Therefore, the spread has a constant mean and standard deviation.

## Function to calulate the log value of the implied volatility on the test set.
def logVolTest(ticker):
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return np.log(test_df[ticker])

##Code to see the result of the function for the NVDA logged values
TSLAlogTest = logVolTest('TSLA"')
TSLAlogTest.head()

##Predicting the values on the
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('PG') + mlr.params[2] * logVolTest('NKE') + mlr.param

##Finding the difference between the predicated and the actual log value
spread_test = TSLAlogTest - mlr_prediction_test

## Printing the AD Fuller test to see if spread is stationary
print('p value for insample stationarity:', adfuller(spread_test)[1])

##Printing the t Statistics
print('t statistics for in sample stationarity:', adfuller(spread_test)[0])

## Plotting the spread

spread_test.plot()
plt.axhline(spread_test.mean(), color='black"')
plt.legend(['Spread'])

plt.show()

0

<ipython-input-103-df37f6742c2d>:10: FutureWarning: Series.__getitem__ treating keys as positions is deprecated.
mlr_prediction_test = mlr.params[@] + mlr.params[1] * logVolTest('PG') + mlr.params[2] * logVolTest('NKE') + ml

p value for insample stationarity: 0.02167477289427217

t statistics for in sample stationarity: -3.171822036085348
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Plotting TSLA against Basket-Test Dataset The test set predictors is plotted against the TSLA options volatility. There is a clear mean
reverting signal and arbitrage for a trader to act on. Whenever the implied volatility is less than the basket the investor can take a long
position on the call option and whenever the implied volatility of TSLA is higher than the basket, the investor can take a short position on

TSLA call option
## The predicted against the basket log values are posted
mlr_prediction.name = 'TSLA Option Basket Test'

pd.concat([TSLAlogTest, mlr_prediction_test], axis=1).plot()
plt.ylabel('volatility levels')
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v Support Vector Machine - SVM 6 Year Dataset

TSLA SVM Model: SVM isused to build a model on the training dataset that was defined in the MLR section above. The same stocks are
used as predictors. The spread is plotted and the pvalue is 5.43e-05 which is lower than 0.05; hence, the spread is stationary and has a
mean reverting signal.

#SVM Model fitted to the training data
SVM_model = SVR()
SVM_model.fit(np.log(train_df[['PG', 'NKE', 'LRCX', 'GLD', 'BA' 11), np.log(train_df[['TSLA']1]))

#SVM Model predicts the NVDA option volatility
SVM_preds = SVM_model.predict(np.log(train_df[['PG', 'NKE', 'LRCX', 'GLD', 'BA'll))

# Calculate the spread of the actual NVDA option volatility and the predicted one
spread = TSLAlog - SVM_preds

#The pvalue is calculated for the spread. The value is less than 0.05; hence, spread is stationary
print ("p-value for in-sample stationarity: ", adfuller(spread)[1])
print ("t-statistics for in-sample stationarity: ", adfuller(spread)[0])

# Convert spread to a pandas Series for plotting
spread_series = pd.Series(spread, index=train_df.index)

# Plot the spread

spread_series.plot()
plt.axhline(spread_series.mean(), color='black')
plt.legend(['Spread'])

plt.show()
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3% /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1183: DataConversionWarning: A column-vector
y = column_or_1d(y, warn=True)
p-value for in-sample stationarity: 5.433179311021402e-05
t-statistics for in-sample stationarity: -4.800226119244746
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Test Prediction: The model is then used on the test dataset. The spread of the test dataset is calculated and the p value is 8.47e-20;
therefore, the spread is stationary

# predictions on the test dataset using the SVM model built
SVM_preds_test = SVM_model.predict(np.log(test_df[['PG', 'NKE', 'LRCX', 'GLD', 'BA' 11))

# Calculate the spread
spread_test = TSLAlogTest - SVM_preds_test

#printing p values for the spread. The spread is stationary as p value is less than 0.05
print ("p-value for in-sample stationarity: ", adfuller(spread_test)[1])
print ("t-statistics for in-sample stationarity: ", adfuller(spread_test)[0])

# Convert spread to a pandas Seriesn for plotting
spread_series = pd.Series(spread_test, index=test_df.index)

# Plot the spread on a graph
spread_series.plot()
plt.axhline(spread_series.mean(), color='black')
plt.legend(['Spread Test'])

plt.show()
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5% p-value for in-sample stationarity: 8.469519838772011le-20
t-statistics for in-sample stationarity: -10.957917422363442
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SVM vs MLR vs Actual TSLA: The 3 option volatility values are plotted for the test set. The results of the MLR and SVM model are very
similar. An investor can trade this mean reverting stationary signals to take advantage of the volatility arbitrage.

mlr_prediction_test.name = "TSLA_basket_test"

# Convert SVM_preds_test to a pandas Series with the same index as NVDAlogTest for plotting
SVM_preds_test_series = pd.Series(SVM_preds_test, index=TSLAlogTest.index, name="SVM_preds_test")

# Concatenate the data from the MLR, SVM and the actual NVDA options volatility
combined_data = pd.concat([TSLAlogTest, mlr_prediction_test, SVM_preds_test_series], axis=1)

# Plot the data

combined_data.plot()

plt.ylabel('Volatility Levels')

plt.title('Predictions and Actual NVDA Option Volatility Data')
plt.legend(['Actual TSLA', 'MLR Prediction', 'SVM Prediction'])

plt.show()
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